Physics 681: Solar Physics and Instrumentation – Lecture 21

Carsten Denker

NJIT Physics Department Center for Solar–Terrestrial Research

Fig 1dS and Conducting Matter
□ Magnetic features: sunspots, sunspot fine structure, filaments, prominences, ...
□ Magnetic from the Sun occurs on all scales! (small flux tubes to mean field)
□ Maxwell's equations (magnetic permeability μ = 4π × 10 ⁻⁷ Vs/Am)
∇ · B = 0
∇ × B = μj
∇ × E = - $\frac{dB}{dt}$
□ Ohm's law
Ü = σE with J = j and E = E + v × B
⇒ j = σ (E + v × B)
□ Center for Solar-Terrestrial Research

\n- □ Induction equation\n
$$
\frac{dB}{dt} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times (\eta \nabla \times \mathbf{B})
$$
\n
\n- □ Magnetic diffusivity\n
$$
\eta = \frac{1}{\mu \sigma}
$$
\n
\n- □ Magnetic Reynolds number\n
$$
R_m = \frac{vl}{\eta} = \frac{\tau_D}{\tau_A} \text{ with } \tau_D = \frac{l^2}{\eta} \text{ and } \tau_A = \frac{l}{\nu}
$$
\n
\n- □ High conductivity:\n
$$
R_m \gg 1 \text{ or } \tau_D \gg \tau_A
$$
\n
\n- □ Electrical conductivity of a fully ionized gas\n
$$
\sigma = \frac{32\epsilon_0^2 \sqrt{\pi} (2kT)^{3/2}}{\sqrt{m_e e^2 Z \ln \Lambda}} \gamma_E \text{ with } \Lambda = \frac{r_D}{p_0}
$$
\n
\n- November 15, 2005\n Center for Solar-Terrestrial Research

\n
\n

- \Box In Λ ≈ 5 for the solar interior, In Λ ≈ 10 for the chromosphere, and ln Λ ≈ 20 for the corona
- **Conductivity is large:**

 $\sigma \approx 0.003 T^{3/2}$ A/Vm

- \Box The temperature in the solar photosphere/chromosphere is low \Leftrightarrow hydrogen and helium are neutral BUT heavier elements with low ionization potentials still donate electrons \Rightarrow collisions of electrons with neutrals \Rightarrow conductivity is greatly reduced
- Conductivity for weak ionization

$$
\sigma = \frac{3e^2}{8S\left(2\pi m_{\rm e}kT\right)^{1/2}}\frac{n_{\rm e}}{n_{\rm n}}
$$

- □ Large horizontal gradients (e.g., sunspots)
- \Box Collisions are rare and magnetic fields are strong \Leftrightarrow anisotropy
- □ Plasma turbulence reduces conductivity

November 15, 2005 Center for Solar-Terrestrial Research

Example 1	Example 2
□ High conductivity $σ = 1$ V/A (in sunspots), typical velocity $v = 1$ km/s, and scale height $l = 100$ km ⇒ frozen field lines	
□ Total magnetic flux	
□ Differential flux at two instances separated by an infinitesimal time interval dt	
□ Differential flux at two instances separated by an infinitesimal time interval dt	
□ $\oint v - \Phi = dt \left[\int \frac{dB}{dt} df + \int \frac{dB}{s} \cdot (v \times ds) \right]$	
with $B \cdot (v \times ds) = (B \times v) ds$ and $\int \frac{B \times v}{s} ds = -\int \left[\nabla \times (v \times B) \right] \cdot df$	
□ $\frac{d\Phi}{dt} = \int \left[\frac{dB}{dt} - \nabla \times (v \times B) \right] \cdot df$	
□ $\frac{d\Phi}{dt} = \int \left[\frac{dB}{dt} - \nabla \times (v \times B) \right] \cdot df$	
□ $\frac{d\Phi}{dt} = \int \left[\nabla \times (v \times B) \cdot \frac{d\Phi}{dt} \right] \cdot df$	
□ $\frac{d\Phi}{dt} = \int \left[\nabla \times (v \times B) \cdot \frac{d\Phi}{dt} \cdot \frac{d\Phi}{dt$	