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Convection
Stability
Mixing-Length Theory

The Local Formalism
Numerical Test Calculations
Overshooting: A Non-Local Formalism

Granulation
Mesogranulation
Supergranulation
Giant Cells
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Stability
Energy transport mechanisms: radiation, convection, and 
conduction
Stratification of the outer layer (≈200,000 km) is unstable
Mixing-length concept: parcel of gas travels a certain distance, 
dissolves, and deposits its energy 
Adiabatic displacement from equilibrium position (no oscillation!)
Schwarschild criterion (1906)
Condition for instability (pressure equilibrium)

Variations of the mean molecular weight µ and chemical 
composition
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Ideal gas equation

Core material is fully ionized (dµ/dr)a = 0
dµ/dr towards center is negative due to the accumulation of helium 

stabilizing
Assume instantaneous adjustment of the ionization equilibrium

Schwarzschild criterion
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Mixing-Length Theory
Viscosity vs. turbulent motion
Numerical methods (Navier-Stokes equation in 3D )
Schmidt and Prandtl (1915-1930) and Böhm-Vitense (1958)
Mixing-length

Energy flux

Radiative flux

Mean excess temperature
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Assume that the mean value of δr is half the mixing length

Convective flux

Convective velocity

Pressure equilibrium (∆P = 0) and integration

Work done by buoyancy force appears as kinetic energy of the 
parcel
Introduce correction factor of ½ to account for friction
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Radiative losses across the surface of the parcel (d = distance over which 
∆T drops to zero)

Convective flux

First term (ideal adiabatic conditions) and second term (real convective 
flux)
Radiative loss per unit time

Spherical parcels d = (8/9) l and Sl / qd = 9/2
Temperature gradients
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Conditions for Convection in Stars
The opacity is large, implying that an unachievable 
temperature gradient would be necessary for radiative
energy transport
A region exists where ionization is occurring, causing a 
large specific heat and a low adiabatic temperature 
gradient
The local gravitational acceleration is, as would be the 
case in distended stars, again leading to a low adiabatic 
temperature gradient
The temperature dependence of the nuclear energy 
generation rate is large, causing a steep radiative
flux gradient and a large temperature gradient               
(CNO cycle or triple alpha process)


