Physics 681: Solar Physics and Instrumentation – Lecture 10

Carsten Denker

NJIT Physics Department Center for Solar–Terrestrial Research

	Equilibria
Thermodynamic e	equilibrium
 A single temper everywhere 	rature \mathcal{T} describes the state of the atmosphere
 Maxwellian velo 	ocity distribution
 Ionization and equations 	excitation according to the Saha and Boltzmann
 Homogeneous a No temperature 	and isotropic black-body radiation field
Local thermodyna	amic equilibrium (LTE)
Locally, a single	e temperature T describes the atmosphere
 Important simp 	blification: $S_{i} = B_{i}(T)$
 Thermalization the temperature 	length has to be shorter than the distance over which e changes
 LTE might not a 	apply to all species of particles
 Good approxim weak line profile 	ation for visible and IR continua, line wings, and es
Non-LTE (a single	e temperature <i>T</i> is insufficient)
 Radiative intera 	actions are too rare
 Thermalization 	length is too long
October 4, 2005	Center for Solar-Terrestrial Research

Continuum Radiation and Collisions

- **D** Photoionization $n_j \alpha_j (v) I_v / hv$
- **a** Radiative recombination $n_{\rm C} (\gamma_j (\nu) + \beta_j (\nu) I_{\nu}) / h\nu$
- Collisional transitions between two bound states

$$C_{\rm UL} = \frac{g_{\rm L}}{g_{\rm U}} \exp\left(\frac{E_{\rm U} - E_{\rm L}}{kT}\right)$$

Collisional transition from and to the continuum

$$C_{\rm Cj} = \left(\frac{h^2}{2\pi m_{\rm e}kT}\right)^{3/2} \frac{n_e g_j}{2u_{\rm C}} \exp\left(\frac{E_C - E_j}{kT}\right) \cdot C_{j\rm C}$$

October 4, 2005

Center for Solar-Terrestrial Research