FUNCTION ROBUST_POLY_FIT,X,Y,NDEG,YFIT,SIG, NUMIT=THIS_MANY ;+ ; NAME: ; ROBUST_POLY_FIT ; ; PURPOSE: ; An outlier-resistant polynomial fit. ; ; CALLING SEQUENCE: ; COEFF = ROBUST_POLY_FIT(X,Y,NDEGREE ,[ YFIT,SIG, NUMIT =] ) ; ; INPUTS: ; X = Independent variable vector, floating-point or double-precision ; Y = Dependent variable vector ; ; OUTPUTS: ; Function result = coefficient vector, length NDEGREE+1. ; IF COEFF=0.0, NO FIT! If N_ELEMENTS(COEFF) > degree+1, the fit is poor ; (in this case the last element of COEFF=0.) ; Either floating point or double precision. ; ; OPTIONAL OUTPUT PARAMETERS: ; YFIT = Vector of calculated y's ; SIG = the "standard deviation" of the residuals ; ; RESTRICTIONS: ; Large values of NDEGREE should be avoided. This routine works best ; when the number of points >> NDEGREE. ; ; PROCEDURE: ; For the initial estimate, the data is sorted by X and broken into ; NDEGREE+2 sets. The X,Y medians of each set are fitted to a polynomial ; via POLY_FIT. Bisquare ("Tukey's Biweight") weights are then ; calculated, using a limit of 6 outlier-resistant standard deviations. ; The fit is repeated iteratively until the robust standard deviation of ; the residuals changes by less than .03xSQRT(.5/(N-1)). ; ; REVISION HISTORY ; Written, H. Freudenreich, STX, 8/90. Revised 4/91. ; 2/94 -- changed convergence criterion ;- ON_ERROR,2 EPS = 1.0E-20 DEL = 5.0E-07 DEGMAX= 6 IF N_ELEMENTS(THIS_MANY) GT 0 THEN ITMAX=THIS_MANY ELSE ITMAX=25 BADFIT=0 NPTS = N_ELEMENTS(X) MINPTS=NDEG+1 IF (NPTS/4*4) EQ NPTS THEN NEED2 = 1 ELSE NEED2 = 0 N3 = 3*NPTS/4 & N1 = NPTS/4 ; If convenient, move X and Y to their centers of gravity: IF NDEG LT DEGMAX THEN BEGIN X0=TOTAL(X)/NPTS & Y0=TOTAL(Y)/NPTS U=X-X0 & V=Y-Y0 ENDIF ELSE BEGIN U=X & V=Y ENDELSE ; The initial estimate. ; Choose an odd number of segments: NUM_SEG = NDEG+2 IF (NUM_SEG/2*2) EQ NUM_SEG THEN NUM_SEG =NUM_SEG+1 MIN_PTS = NUM_SEG*3 IF NPTS LT 10000 THEN BEGIN ;MIN_PTS THEN BEGIN ; Settle for least-squares: LSQFIT = 1 CC = POLY_FIT( U, V, NDEG, YFIT ) ENDIF ELSE BEGIN ; Break up the data into segments: LSQFIT = 0 Q = SORT(U) U = U[Q] & V = V[Q] N_PER_SEG = REPLICATE( NPTS/NUM_SEG, NUM_SEG) ; Put the leftover points in the middle segment: N_LEFT = NPTS - N_PER_SEG[0]*NUM_SEG N_PER_SEG[NUM_SEG/2] = N_PER_SEG[NUM_SEG/2] + N_LEFT R = DBLARR(NUM_SEG) & S = DBLARR(NUM_SEG) R[0]=MEDIAN( U[0:N_PER_SEG[0]-1],/EVEN ) S[0]=MEDIAN( V[0:N_PER_SEG[0]-1],/EVEN ) I2 = N_PER_SEG[0]-1 FOR I=1,NUM_SEG-1 DO BEGIN I1 = I2 + 1 I2 = I1 + N_PER_SEG[I] - 1 R[I] = MEDIAN( U[I1:I2], /EVEN) & S[I] = MEDIAN( V[I1:I2],/EVEN ) ENDFOR ; Now fit: CC = POLY_FIT( R,S, NDEG ) YFIT = POLY(U,CC) ENDELSE ISTAT=ROB_CHECKFIT(V,YFIT,EPS,DEL, SIG,FRACDEV,NGOOD,W,S) IF ISTAT EQ 0 THEN GOTO,AFTERFIT IF NGOOD LT MINPTS THEN BEGIN IF LSQFIT EQ 0 THEN BEGIN ; Try a least-squares: CC = POLY_FIT( U, V, NDEG, YFIT ) ISTAT=ROB_CHECKFIT(V,YFIT,EPS,DEL, SIG,FRACDEV,NGOOD,W,S) IF ISTAT EQ 0 THEN GOTO,AFTERFIT NGOOD = NPTS-COUNT ENDIF IF NGOOD LT MINPTS THEN BEGIN PRINT,'ROBUST_POLY_FIT: No Fit Possible!' RETURN,0. ENDIF ENDIF ; Now iterate until the solution converges: CLOSE_ENOUGH = .03*SQRT(.5/(NPTS-1)) > DEL DIFF= 1.0E10 SIG_1= (100.*SIG) < 1.0E20 NIT = 0 WHILE( (DIFF GT CLOSE_ENOUGH) AND (NIT LT ITMAX) ) DO BEGIN NIT=NIT+1 SIG_2=SIG_1 SIG_1=SIG ; We use the "obsolete" POLYFITW routine because it allows us to input weights ; rather than measure errors CC= POLYFITW( U, V, W, NDEG, YFIT ) ISTAT=ROB_CHECKFIT(V,YFIT,EPS,DEL, SIG,FRACDEV,NGOOD,W,S) IF ISTAT EQ 0 THEN GOTO,AFTERFIT IF NGOOD LT MINPTS THEN BEGIN PRINT,'ROBUST_POLY_FIT: Questionable Fit!' BADFIT=1 GOTO,AFTERFIT ENDIF DIFF = (ABS(SIG_1-SIG)/SIG) < (ABS(SIG_2-SIG)/SIG) ENDWHILE ;IF NIT GE ITMAX THEN PRINT,'ROBUST_POLY_FIT: Did not converge in',ITMAX,$ ;' iterations!' AFTERFIT: CC=REFORM(CC) IF NDEG LT DEGMAX THEN BEGIN CASE NDEG OF 1: CC[0] = CC[0]-CC[1]*X0 + Y0 2: BEGIN CC[0] = CC[0]-CC[1]*X0+CC[2]*X0^2 + Y0 CC[1] = CC[1]-2.*CC[2]*X0 END 3: BEGIN CC[0] = CC[0]-CC[1]*X0+CC[2]*X0^2-CC[3]*X0^3 + Y0 CC[1] = CC[1]-2.*CC[2]*X0+3.*CC[3]*X0^2 CC[2] = CC[2]-3.*CC[3]*X0 END 4: BEGIN CC[0] = CC[0]- CC[1]*X0+CC[2]*X0^2-CC[3]*X0^3+CC[4]*X0^4+ Y0 CC[1] = CC[1]-2.*CC[2]*X0+3.*CC[3]*X0^2-4.*CC[4]*X0^3 CC[2] = CC[2]-3.*CC[3]*X0+6.*CC[4]*X0^2 CC[3] = CC[3]-4.*CC[4]*X0 END 5: BEGIN CC[0] = CC[0]- CC[1]*X0+CC[2]*X0^2-CC[3]*X0^3+CC[4]*X0^4-CC[5]*X0^5+ Y0 CC[1] = CC[1]-2.*CC[2]*X0+ 3.*CC[3]*X0^2- 4.*CC[4]*X0^3+5.*CC[5]*X0^4 CC[2] = CC[2]-3.*CC[3]*X0+ 6.*CC[4]*X0^2-10.*CC[5]*X0^3 CC[3] = CC[3]-4.*CC[4]*X0+10.*CC[5]*X0^2 CC[4] = CC[4]-5.*CC[5]*X0 END ENDCASE ENDIF ; Calculate the fit at points X: IF( N_PARAMS(0) GT 3 )THEN YFIT=POLY(X,CC) IF BADFIT EQ 1 THEN CC=[CC,0.] RETURN,CC END