PRO MOONPOS, jd, ra, dec, dis, geolong, geolat, RADIAN = radian ;+ ; NAME: ; MOONPOS ; PURPOSE: ; To compute the RA and Dec of the Moon at specified Julian date(s). ; ; CALLING SEQUENCE: ; MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN ] ; ; INPUTS: ; JD - Julian date, scalar or vector, double precision suggested ; ; OUTPUTS: ; Ra - Apparent right ascension of the moon in DEGREES, referred to the ; true equator of the specified date(s) ; Dec - The declination of the moon in DEGREES ; Dis - The Earth-moon distance in kilometers (between the center of the ; Earth and the center of the Moon). ; Geolong - Apparent longitude of the moon in DEGREES, referred to the ; ecliptic of the specified date(s) ; Geolat - Apparent longitude of the moon in DEGREES, referred to the ; ecliptic of the specified date(s) ; ; The output variables will all have the same number of elements as the ; input Julian date vector, JD. If JD is a scalar then the output ; variables will be also. ; ; OPTIONAL INPUT KEYWORD: ; /RADIAN - If this keyword is set and non-zero, then all output variables ; are given in Radians rather than Degrees ; ; EXAMPLES: ; (1) Find the position of the moon on April 12, 1992 ; ; IDL> jdcnv,1992,4,12,0,jd ;Get Julian date ; IDL> moonpos, jd, ra ,dec ;Get RA and Dec of moon ; IDL> print,adstring(ra,dec,1) ; ==> 08 58 45.23 +13 46 6.1 ; ; This is within 1" from the position given in the Astronomical Almanac ; ; (2) Plot the Earth-moon distance for every day at 0 TD in July, 1996 ; ; IDL> jdcnv,1996,7,1,0,jd ;Get Julian date of July 1 ; IDL> moonpos,jd+dindgen(31), ra, dec, dis ;Position at all 31 days ; IDL> plot,indgen(31),dis, /YNOZ ; ; METHOD: ; Derived from the Chapront ELP2000/82 Lunar Theory (Chapront-Touze' and ; Chapront, 1983, 124, 50), as described by Jean Meeus in Chapter 47 of ; ``Astronomical Algorithms'' (Willmann-Bell, Richmond), 2nd edition, ; 1998. Meeus quotes an approximate accuracy of 10" in longitude and ; 4" in latitude, but he does not give the time range for this accuracy. ; ; Comparison of this IDL procedure with the example in ``Astronomical ; Algorithms'' reveals a very small discrepancy (~1 km) in the distance ; computation, but no difference in the position calculation. ; ; This procedure underwent a major rewrite in June 1996, and the new ; calling sequence is *incompatible with the old* (e.g. angles now ; returned in degrees instead of radians). ; ; PROCEDURES CALLED: ; CIRRANGE, ISARRAY(), NUTATE, TEN() - from IDL Astronomy Library ; POLY() - from IDL User's Library ; MODIFICATION HISTORY: ; Written by Michael R. Greason, STX, 31 October 1988. ; Major rewrite, new (incompatible) calling sequence, much improved ; accuracy, W. Landsman Hughes STX June 1996 ; Added /RADIAN keyword W. Landsman August 1997 ; Converted to IDL V5.0 W. Landsman September 1997 ; Use improved expressions for L',D,M,M', and F given in 2nd edition of ; Meeus (very slight change), W. Landsman November 2000 ;- On_error,2 if N_params() LT 3 then begin print,'Syntax - MOONPOS, jd, ra, dec, dis, geolong, geolat, [/RADIAN]' print,'Output angles in DEGREES unless /RADIAN is set' return endif npts = N_elements(jd) dtor = !DPI/180.0d ; form time in Julian centuries from 1900.0 t = (jd[*] - 2451545.0d)/36525.0d0 d_lng = [0,2,2,0,0,0,2,2,2,2,0,1,0,2,0,0,4,0,4,2,2,1,1,2,2,4,2,0,2,2,1,2,0,0, $ 2,2,2,4,0,3,2,4,0,2,2,2,4,0,4,1,2,0,1,3,4,2,0,1,2,2] m_lng = [0,0,0,0,1,0,0,-1,0,-1,1,0,1,0,0,0,0,0,0,1,1,0,1,-1,0,0,0,1,0,-1,0, $ -2,1,2,-2,0,0,-1,0,0,1,-1,2,2,1,-1,0,0,-1,0,1,0,1,0,0,-1,2,1,0,0] mp_lng = [1,-1,0,2,0,0,-2,-1,1,0,-1,0,1,0,1,1,-1,3,-2,-1,0,-1,0,1,2,0,-3,-2,$ -1,-2,1,0,2,0,-1,1,0,-1,2,-1,1,-2,-1,-1,-2,0,1,4,0,-2,0,2,1,-2,-3,2,1,-1, $ 3,-1] f_lng = [0,0,0,0,0,2,0,0,0,0,0,0,0,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0, $ 0,0,0,-2,2,0,2,0,0,0,0,0,0,-2,0,0,0,0,-2,-2,0,0,0,0,0,0,0,-2] sin_lng = [6288774,1274027,658314,213618,-185116,-114332,58793,57066,53322, $ 45758,-40923,-34720,-30383,15327,-12528,10980,10675,10034,8548,-7888,-6766, $ -5163,4987,4036,3994,3861,3665,-2689,-2602,2390,-2348,2236,-2120,-2069,2048, $ -1773,-1595,1215,-1110,-892,-810,759,-713,-700,691,596,549,537,520,-487, $ -399,-381,351,-340,330,327,-323,299,294,0.0d] cos_lng = [-20905355,-3699111,-2955968,-569925,48888,-3149,246158,-152138, $ -170733,-204586,-129620,108743,104755,10321,0,79661,-34782,-23210,-21636, $ 24208,30824,-8379,-16675,-12831,-10445,-11650,14403,-7003,0,10056,6322, $ -9884,5751,0,-4950,4130,0,-3958,0,3258,2616,-1897,-2117,2354,0,0,-1423, $ -1117,-1571,-1739,0,-4421,0,0,0,0,1165,0,0,8752.0d] d_lat = [0,0,0,2,2,2,2,0,2,0,2,2,2,2,2,2,2,0,4,0,0,0,1,0,0,0,1,0,4,4,0,4,2,2,$ 2,2,0,2,2,2,2,4,2,2,0,2,1,1,0,2,1,2,0,4,4,1,4,1,4,2] m_lat = [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,-1,-1,-1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0,$ 0,0,-1,0,0,0,0,1,1,0,-1,-2,0,1,1,1,1,1,0,-1,1,0,-1,0,0,0,-1,-2] mp_lat = [0,1,1,0,-1,-1,0,2,1,2,0,-2,1,0,-1,0,-1,-1,-1,0,0,-1,0,1,1,0,0,3,0, $ -1,1, -2,0,2,1,-2,3,2,-3,-1,0,0,1,0,1,1,0,0,-2,-1,1,-2,2,-2,-1,1,1,-1,0,0] f_lat =[ 1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,-1,1,3,1,1,1,-1,-1,-1, $ 1,-1,1,-3,1,-3,-1,-1,1,-1,1,-1,1,1,1,1,-1,3,-1,-1,1,-1,-1,1,-1,1,-1,-1, $ -1,-1,-1,-1,1] sin_lat = [5128122,280602,277693,173237,55413,46271,32573,17198,9266,8822, $ 8216,4324,4200,-3359,2463,2211,2065,-1870,1828,-1794,-1749,-1565,-1491, $ -1475,-1410,-1344,-1335,1107,1021,833,777,671,607,596,491,-451,439,422, $ 421,-366,-351,331,315,302,-283,-229,223,223,-220,-220,-185,181,-177,176, $ 166,-164,132,-119,115,107.0d] ; Mean longitude of the moon refered to mean equinox of the date coeff0 = [218.3164477d, 481267.88123421d, -0.0015786d0, 1.0d/538841.0d, $ -1.0d/6.5194d7 ] lprimed = poly(T, coeff0) cirrange, lprimed lprime = lprimed*dtor ; Mean elongation of the Moon coeff1 = [297.8501921d, 445267.1114034d, -0.0018819d, 1.0d/545868.0d, $ -1.0d/1.13065d8 ] d = poly(T, coeff1) cirrange,d d = d*dtor ; Sun's mean anomaly coeff2 = [357.5291092d, 35999.0502909d, -0.0001536d, 1.0d/2.449d7 ] M = poly(T,coeff2) cirrange, M M = M*dtor ; Moon's mean anomaly coeff3 = [134.9633964d, 477198.8675055d, 0.0087414d, 1.0/6.9699d4, $ -1.0d/1.4712d7 ] Mprime = poly(T, coeff3) cirrange, Mprime Mprime = Mprime*dtor ; Moon's argument of latitude coeff4 = [93.2720950d, 483202.0175233d, -0.0036539, -1.0d/3.526d7, $ 1.0d/8.6331d8 ] F = poly(T, coeff4 ) cirrange, F F = F*dtor ; Eccentricity of Earth's orbit around the Sun E = 1 - 0.002516d*T - 7.4d-6*T^2 E2 = E^2 ecorr1 = where(abs(m_lng) EQ 1) ecorr2 = where(abs(m_lat) EQ 1) ecorr3 = where(abs(m_lng) EQ 2) ecorr4 = where(abs(m_lat) EQ 2) ; Additional arguments A1 = (119.75d + 131.849d*T) * dtor A2 = (53.09d + 479264.290d*T) * dtor A3 = (313.45d + 481266.484d*T) * dtor suml_add = 3958*sin(A1) + 1962*sin(lprime - F) + 318*sin(A2) sumb_add = -2235*sin(lprime) + 382*sin(A3) + 175*sin(A1-F) + $ 175*sin(A1 + F) + 127*sin(Lprime - Mprime) - $ 115*sin(Lprime + Mprime) ; Sum the periodic terms geolong = dblarr(npts) & geolat = geolong & dis = geolong for i=0,npts-1 do begin sinlng = sin_lng & coslng = cos_lng & sinlat = sin_lat sinlng[ecorr1] = e[i]*sinlng[ecorr1] coslng[ecorr1] = e[i]*coslng[ecorr1] sinlat[ecorr2] = e[i]*sinlat[ecorr2] sinlng[ecorr3] = e2[i]*sinlng[ecorr3] coslng[ecorr3] = e2[i]*coslng[ecorr3] sinlat[ecorr4] = e2[i]*sinlat[ecorr4] arg = d_lng*d[i] + m_lng*m[i] +mp_lng*mprime[i] + f_lng*f[i] geolong[i] = lprimed[i] + ( total(sinlng*sin(arg)) + suml_add[i] )/1.0d6 dis[i] = 385000.56d + total(coslng*cos(arg))/1.0d3 arg = d_lat*d[i] + m_lat*m[i] +mp_lat*mprime[i] + f_lat*f[i] geolat[i] = (total(sinlat*sin(arg)) + sumb_add[i])/1.0d6 endfor nutate, jd, nlong, elong ;Find the nutation in longitude geolong= geolong + nlong/3.6d3 cirrange,geolong lambda = geolong*dtor beta = geolat*dtor ;Find mean obliquity and convert lambda,beta to RA, Dec c = [21.448,-4680.93,-1.55,1999.25,-51.38,-249.67,-39.05,7.12,27.87,5.79,2.45d] epsilon = ten(23,26) + poly(t/1.d2,c)/3600.d eps = (epsilon + elong/3600.d )*dtor ;True obliquity in radians ra = atan( sin(lambda)*cos(eps) - tan(beta)* sin(eps), cos(lambda) ) cirrange,ra,/RADIAN dec = asin( sin(beta)*cos(eps) + cos(beta)*sin(eps)*sin(lambda) ) if not isarray(jd) then begin ra = ra[0] & dec = dec[0] & dis = dis[0] geolong = geolong[0] & geolat = geolat[0] endif if not keyword_set(RADIAN) then begin ra = ra/dtor & dec = dec/dtor endif else begin geolong = lambda & geolat = beta endelse return end