pro fm_unred, wave, flux, ebv, funred, R_V = R_V, gamma = gamma, x0 = x0, $ c1 = c1, c2 = c2, c3 = c3, c4 = c4,avglmc=avglmc, lmc2 = lmc2, $ ExtCurve=ExtCurve ;+ ; NAME: ; FM_UNRED ; PURPOSE: ; Deredden a flux vector using the Fitzpatrick (1999) parameterization ; EXPLANATION: ; The R-dependent Galactic extinction curve is that of Fitzpatrick & Massa ; (Fitzpatrick, 1999, PASP, 111, 63; astro-ph/9809387 ). ; Parameterization is valid from the IR to the far-UV (3.5 microns to 0.1 ; microns). UV extinction curve is extrapolated down to 912 Angstroms. ; ; CALLING SEQUENCE: ; FM_UNRED, wave, flux, ebv, [ funred, R_V = , /LMC2, /AVGLMC, ExtCurve= ; gamma =, x0=, c1=, c2=, c3=, c4= ] ; INPUT: ; WAVE - wavelength vector (Angstroms) ; FLUX - calibrated flux vector, same number of elements as WAVE ; If only 3 parameters are supplied, then this vector will ; updated on output to contain the dereddened flux. ; EBV - color excess E(B-V), scalar. If a negative EBV is supplied, ; then fluxes will be reddened rather than deredenned. ; ; OUTPUT: ; FUNRED - unreddened flux vector, same units and number of elements ; as FLUX ; ; OPTIONAL INPUT KEYWORDS ; R_V - scalar specifying the ratio of total to selective extinction ; R(V) = A(V) / E(B - V). If not specified, then R = 3.1 ; Extreme values of R(V) range from 2.3 to 5.3 ; ; /AVGLMC - if set, then the default fit parameters c1,c2,c3,c4,gamma,x0 ; are set to the average values determined for reddening in the ; general Large Magellanic Cloud (LMC) field by Misselt et al. ; (1999, ApJ, 515, 128) ; /LMC2 - if set, then the fit parameters are set to the values determined ; for the LMC2 field (including 30 Dor) by Misselt et al. ; Note that neither /AVGLMC or /LMC2 will alter the default value ; of R_V which is poorly known for the LMC. ; ; The following five input keyword parameters allow the user to customize ; the adopted extinction curve ; ; x0 - Centroid of 2200 A bump in microns (default = 4.596) ; gamma - Width of 2200 A bump in microns (default =0.99) ; c3 - Strength of the 2200 A bump (default = 3.23) ; c4 - FUV curvature (default = 0.41) ; c2 - Slope of the linear UV extinction component ; (default = -0.824 + 4.717/R) ; c1 - Intercept of the linear UV extinction component ; (default = 2.030 - 3.007*c2 ; ; OPTIONAL OUTPUT KEYWORD: ; ExtCurve - Returns the E(wave-V)/E(B-V) extinction curve, interpolated ; onto the input wavelength vector ; ; EXAMPLE: ; Determine how a flat spectrum (in wavelength) between 1200 A and 3200 A ; is altered by a reddening of E(B-V) = 0.1. Assume an "average" ; reddening for the diffuse interstellar medium (R(V) = 3.1) ; ; IDL> w = 1200 + findgen(40)*50 ;Create a wavelength vector ; IDL> f = w*0 + 1 ;Create a "flat" flux vector ; IDL> fm_unred, w, f, -0.1, fnew ;Redden (negative E(B-V)) flux vector ; IDL> plot,w,fnew ; ; NOTES: ; (1) The following comparisons between the FM curve and that of Cardelli, ; Clayton, & Mathis (1989), (see ccm_unred.pro): ; (a) - In the UV, the FM and CCM curves are similar for R < 4.0, but ; diverge for larger R ; (b) - In the optical region, the FM more closely matches the ; monochromatic extinction, especially near the R band. ; (2) Many sightlines with peculiar ultraviolet interstellar extinction ; can be represented with the FM curve, if the proper value of ; R(V) is supplied. ; (3) Use the 4 parameter calling sequence if you wish to save the ; original flux vector. ; PROCEDURE CALLS: ; CSPLINE(), POLY() ; REVISION HISTORY: ; Written W. Landsman Raytheon STX October, 1998 ; Based on FMRCurve by E. Fitzpatrick (Villanova) ; Added /LMC2 and /AVGLMC keywords, W. Landsman August 2000 ; Added ExtCurve keyword, J. Wm. Parker August 2000 ; ;- On_error, 2 if N_params() LT 3 then begin print,'Syntax: FM_UNRED, wave, flux, ebv, funred,[ R_V =, /LMC2, /AVGLMC ' print,' gamma =, x0 =, c1 =, c2 = ,c3 = ,c4 =, ExtCurve=]' return endif if not keyword_set(R_V) then R_V = 3.1 x = 10000./ wave ; Convert to inverse microns curve = x*0. ; Set default values of c1,c2,c3,c4,gamma and x0 parameters if keyword_set(LMC2) then begin if N_elements(x0) EQ 0 then x0 = 4.626 if N_elements(gamma) EQ 0 then gamma = 1.05 if N_elements(c4) EQ 0 then c4 = 0.42 if N_elements(c3) EQ 0 then c3 = 1.92 if N_elements(c2) EQ 0 then c2 = 1.31 if N_elements(c1) EQ 0 then c1 = -2.16 endif else if keyword_set(AVGLMC) then begin if N_elements(x0) EQ 0 then x0 = 4.596 if N_elements(gamma) EQ 0 then gamma = 0.91 if N_elements(c4) EQ 0 then c4 = 0.64 if N_elements(c3) EQ 0 then c3 = 2.73 if N_elements(c2) EQ 0 then c2 = 1.11 if N_elements(c1) EQ 0 then c1 = -1.28 endif else begin if N_elements(x0) EQ 0 then x0 = 4.596 if N_elements(gamma) EQ 0 then gamma = 0.99 if N_elements(c3) EQ 0 then c3 = 3.23 if N_elements(c4) EQ 0 then c4 = 0.41 if N_elements(c2) EQ 0 then c2 = -0.824 + 4.717/R_V if N_elements(c1) EQ 0 then c1 = 2.030 - 3.007*c2 endelse ; Compute UV portion of A(lambda)/E(B-V) curve using FM fitting function and ; R-dependent coefficients xcutuv = 10000.0/2700.0 xspluv = 10000.0/[2700.0,2600.0] iuv = where(x ge xcutuv, N_UV) IF (N_UV GT 0) THEN xuv = [xspluv,x[iuv]] ELSE xuv = xspluv yuv = c1 + c2*xuv yuv = yuv + c3*xuv^2/((xuv^2-x0^2)^2 +(xuv*gamma)^2) yuv = yuv + c4*(0.5392*((xuv>5.9)-5.9)^2+0.05644*((xuv>5.9)-5.9)^3) yuv = yuv + R_V yspluv = yuv[0:1] ; save spline points IF (N_UV GT 0) THEN curve[iuv] = yuv[2:*] ; remove spline points ; Compute optical portion of A(lambda)/E(B-V) curve ; using cubic spline anchored in UV, optical, and IR xsplopir = [0,10000.0/[26500.0,12200.0,6000.0,5470.0,4670.0,4110.0]] ysplir = [0.0,0.26469,0.82925]*R_V/3.1 ysplop = [poly(R_V, [-4.22809e-01, 1.00270, 2.13572e-04] ), $ poly(R_V, [-5.13540e-02, 1.00216, -7.35778e-05] ), $ poly(R_V, [ 7.00127e-01, 1.00184, -3.32598e-05] ), $ poly(R_V, [ 1.19456, 1.01707, -5.46959e-03, 7.97809e-04, $ -4.45636e-05] ) ] ysplopir = [ysplir,ysplop] iopir = where(x lt xcutuv, Nopir) if (Nopir GT 0) then $ curve[iopir] = CSPLINE([xsplopir,xspluv],[ysplopir,yspluv],x[iopir]) ; Now apply extinction correction to input flux vector curve = ebv*curve if N_params() EQ 3 then flux = flux * 10.^(0.4*curve) else $ funred = flux * 10.^(0.4*curve) ;Derive unreddened flux ExtCurve = Curve - R_V end