\relax \@writefile{toc}{\contentsline {section}{\numberline {A.}Project Description}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.1}Overview}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.2}Science Drivers for the NST Thermal IR Spectrograph}{1}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.3}Schematic of the NST}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Schematic of the 1.6\nobreakspace {}m off-axis, open NST (top) and its optical layout (bottom). On the top part, the heat stop (HS) resides at the Gregorian focus with the SM mounted on a PI hexapod. The wavefront sensing system (WFS) resides immediately before M3 (along with the polarization optics for magnetic field measurements). M4 sends the light to the Coud\'e Room below. The HS, SM, M3 and M4 are not apparent in the figure. If M4 is flipped the light goes to the Nasmyth Bench where the spectrograph will reside (???REPLACE UPPER DRAWING WITH ONE HAVE A SCHEMATIC SPECTROGRAPH ON THE NASMYTH???) for which the light path is shown in red. This is where the first light observations occurred. The design was driven by competing needs for rigidity near the SM and an open light path. For more details, see \special {color push Blue}\relax $\@@underline {\hbox {\textit {http://www.bbso.njit.edu/newtelescope}}}\mathsurround \z@ $\relax \special {color pop}.}}{2}} \newlabel{FIG01}{{A.3}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip A diffraction-limited image obtained on the NST at the Nasmyth focus (???NEED R_0 ETC???).}}{3}} \newlabel{FIG02}{{3}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.4}Strehl Ratio of the Beam Feeding the Spectrograph}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip The NST equatorial mount, mirror cell, counterweights (for right ascension balance), and tower to secondary.}}{4}} \newlabel{FIG1A}{{2}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.5}AO-76 at BBSO}{4}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces }}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip A diffraction-limited image obtained at BBSO on April 29, 2005 with the AO-76 system and speckle reconstruction.}}{5}} \newlabel{FIG02}{{4}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {A.6}Science Instruments: Near Infrared and Visible Imaging Vector Magnetograph Systems}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Comparison of the variance of the Zernike Coefficients for AO-on (carets) and AO-off (asterisks) data determined from the BBSO AO WFS. The solid curve represents a fit to the Kolmogorov spectrum of the AO-off data for $D/r_0$=12.10 (Denker et al., 2007), where D=65\nobreakspace {}cm and $r_0$ is the Fried parameter. The larger the ratio $D/r_0$, the more important AO correction becomes.}}{6}} \newlabel{FIG03}{{5}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip The design of the Coud\'e Laboratory optics for AO-76 for the NST. It is as achromatic as possible combination of reflective-refractive optics, while largely using off-the-shelf components. M5 and M6 are folding flats fed from the Gregorian focus beyond the folding mirror, M4, that sends the light down the coud\'e axis. There are two relay doublets, three OAP's (off-axis powered mirrors) and the DM. }}{6}} \newlabel{FIG04}{{A.5}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Functional block diagram of the WFS and the reconstruction unit of the AO-308 system.}}{7}} \newlabel{FIG06}{{8}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Spot diagram for AO-76 showing near diffraction-limited image quality for the wavelength range from 0.5 to 1.5\nobreakspace {}$\mu $m and for a circular field of view of 100$''$, which is appropriate for the Fabry-P\'erot etalons. The circles are the Airy disks (diffraction limit disks) of the shortest wavelength (0.5\nobreakspace {}$\mu $m). The spots are not fully confined to the Airy disk, but the Strehl will be $\ge 0.9$. }}{8}} \newlabel{FIG05}{{7}{8}} \@writefile{toc}{\contentsline {section}{\numberline {B.}Proposed Work}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1}Overview}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2}The AO-308 Development Plan}{8}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {B.2.1}The Optical Design of AO-308}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip The design of Coud\'e Lab optics for AO-308 of the NST. It is as achromatic as possible combination of reflective-refractive optics, while largely using off-the-shelf components. M5 and M6 are folding flats fed from the Gregorian focus beyond the folding mirror, M4, that sends the light down the coud\'e axis. There are two relay doublets, three OAP's (off-axis powered mirrors) and the DM. The basic similarities for AO-76 and AO-309 on the NST is apparent when comparing this figure to Figure\nobreakspace {}5.}}{9}} \newlabel{FIG07}{{9}{9}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces }}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Spot diagram for AO-308 showing near diffraction-limited image quality for the wavelength range from 0.5 to 1.5\nobreakspace {}$\mu $m and for a circular field of view of 100$''$, which is appropriate for the Fabry-P\'erot etalons. The circles are the Airy disks (diffraction limit disks) of the shortest wavelength (0.5\nobreakspace {}$\mu $m). The spots are not fully confined to the Airy disk, but the Strehl will be $\ge 0.9$.}}{10}} \newlabel{FIG08}{{10}{10}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {B.2.2}Electronic, Computational and Mechanical Systems}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3}Performance Predictions}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Theoretical Strehl ratio {\it at the primary mirror} as a function of the number of corrected modes under three different seeing conditions: $r_0$ = 6, 14, and 24\nobreakspace {}cm, which are the expected median seeing at BBSO at 0.5, 1.0 and 1.6\nobreakspace {}$\mu $m respectively. The vertical dashed line on the right indicates the maximum number of modes that could be corrected by AO-308. The vertical dashed line on the left indicates the anticipated performance with half of the maximum number of modes being corrected. \vspace *{-6mm} }}{11}} \newlabel{FIG09}{{11}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Histogram (normalized to unity) of Strehl ratios in the detector plane that we expect to achieve from AO-76 as derived from comprehensive error budget analysis, and assuming the measured distribution of BBSO seeing. The dotted line is for visible (0.5 $\mu $m) and the solid line for NIR (1.6 $\mu $m) wavelengths. For the visible, the lack of a peak indicates that diffraction limited corrections would rarely occur. }}{12}} \newlabel{FIG110}{{B.3}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip Histogram (normalized to unity) of Strehl ratios in the detector plane that we expect to achieve from AO-308 as derived from comprehensive error budget analysis, and assuming the measured distribution of BBSO seeing. The dotted line is for visible (0.5 $\mu $m) and the solid line for NIR (1.6 $\mu $m) wavelengths. For the visible, the predicted focal plane Strehl has a satisfactory value of about 0.3, while for the NIR it is somewhat $>$0.8.}}{12}} \newlabel{FIG11}{{B.3}{12}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.4}Education and Research Training}{12}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.5}Data and Telescope Time}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.6}Hardware and Personnel Budget}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.7}Management Plan and Timelines}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces \relax \fontsize {10}{12}\selectfont \abovedisplayskip 10\p@ plus2\p@ minus5\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6\p@ plus3\p@ minus3\p@ \def \leftmargin \leftmargini \parsep 4.5\p@ plus2\p@ minus\p@ \topsep 9\p@ plus3\p@ minus5\p@ \itemsep 4.5\p@ plus2\p@ minus\p@ {\leftmargin \leftmargini \topsep 6\p@ plus2\p@ minus2\p@ \parsep 3\p@ plus2\p@ minus\p@ \itemsep \parsep }\belowdisplayskip \abovedisplayskip The Gantt Chart shows the AO-308 project schedule. The chart is ``rolled-up'' because it is so detailed and would be hard to read. A complete version showing the tasks with each summary unrolled appears in the ``Supplementary Documents'' section, along with a vertical flow version of the full Gantt chart that is shown there.}}{14}} \newlabel{FIG10}{{14}{14}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces }}{15}} \@writefile{toc}{\contentsline {section}{\numberline {C.}References}{16}}