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Oscillations detected on the solar surface provide a unique possi-
bility for investigations of the interior properties of a star. Through
major observational efforts, including extensive observations from
space, as well as development of sophisticated tools for the analy-
sis and interpretation of the data, we have been able to infer the
large-scale structure and rotation of the solar interior with sub-
stantial accuracy, and we are beginning to get information about
the complex subsurface structure and dynamics of sunspot regions,
which dominate the magnetic activity in the solar atmosphere and
beyond. The results provide a detailed test of the modeling of stel-
lar structure and evolution, and hence of the physical properties
of matter assumed in the models. In this way the basis for using
stellar modeling in other branches of science is very substantially
strengthened; an important example is the use of observations of
solar neutrinos to constrain the properties of the neutrino.
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I. INTRODUCTION

By the standards of astrophysics, stars are relatively
well understood. Modelling of stellar evolution has ex-
plained, or at least accounted for, many of the observed
properties of stars. Stellar models are computed on the
basis of the assumed physical conditions in stellar interi-
ors, including the thermodynamical properties of stellar
matter, the interaction between matter and radiation and
the nuclear reactions that power the stars. By follow-
ing the changes in structure as the stars evolve through
the fusion of lighter elements into heavier, starting with
hydrogen being turned into helium, the models predict
how the observable properties of the stars change as they
age. These predictions can then be compared to observa-
tions. Important examples are the distributions of stars
in terms of surface temperature and luminosity, particu-
larly for stellar clusters where the stars, having presum-
ably been formed in the same interstellar cloud, can be
assumed to share the same age and original composition.
These distributions are generally in reasonable agreement
with the models; the comparison between observations
and models furthermore provides estimates of the ages of
the clusters, of considerable interest to the understanding
of the evolution of the Galaxy. Additional tests, gener-
ally quite satisfactory, are provided in the relatively few
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cases where stellar masses can be determined with rea-
sonable accuracy from the motion of stars in binary sys-
tems. Such successes give some confidence in the use of
stellar models in other areas of astrophysics. These in-
clude studies of element synthesis in late stages of stellar
evolution, the use of supernova explosions as ‘standard
candles’ in cosmology, and estimates of the primordial
element composition from stellar observations.

An important aspect of stellar astrophysics is the use
of stars as physics laboratories. Since the basic prop-
erties of stars and their modeling are presumed to be
relatively well established, one may hope to use more
detailed observations to provide information about the
physics of stellar interiors, to the extent that it is re-
flected in observable properties. This is of obvious inter-
est: conditions in the interiors of stars are generally far
more extreme, in terms of temperature and density, than
achievable under controlled circumstances in terrestrial
laboratories. Thus sufficiently detailed stellar data might
offer the hope of providing information on the properties
of matter under these conditions.

Yet in reality there is little reason to be complacent
about the status of stellar astrophysics. Most obser-
vations relevant to stellar interiors provide only limited
constraints on the detailed properties of the stars. Where
more extensive information is becoming available, such as
determinations of detailed surface abundances, the mod-
els often fail to explain it. Furthermore, the models are
in fact extremely simple, compared to the potential com-
plexities of stellar interiors. In particular, convection,
which dominates energy transport in parts of most stars,
is treated very crudely while other potential hydrody-
namical instabilities are generally neglected. Also stellar
rotation is rarely taken into account, yet could have im-
portant effects on the evolution. These limitations could
have profound effects on, for example, the modeling of
late stages of stellar evolution, which depend sensitively
on the composition profile established during the life of
the star.

The Sun offers an example of a star that can be stud-
ied in very great detail. Furthermore, it is a relatively
simple star: it is in the middle of its life, with approx-
imately half the original central abundance of hydrogen
having been used, and, compared to some other stars,
the physical conditions in the solar interior are relatively
benign. Thus in principle the Sun provides an ideal case
for testing the theory of stellar evolution.

In practice, the success of such tests was for a long
time somewhat doubtful. Solar modeling depends on
two unknown parameters: the initial helium abundance
and a parameter characterizing the efficacy of convective
energy transport near the solar surface. These param-
eters can be adjusted to provide a model of solar mass,
matching the solar radius and luminosity at the age of the
Sun. Given this calibration, however, the measured sur-

face properties of the Sun provide no independent test of
the model. Furthermore, two potentially severe problems
with solar models have been widely considered. One, the
so-called faint early Sun problem, resulted from the re-
alization that solar models predicted that the initial lu-
minosity of the Sun, at the start of hydrogen fusion, was
approximately 70 per cent of the present value, yet geo-
logical evidence indicated that there had been no major
change in the climate of the Earth over the past 3.5 Gyr
(e.g., Sagan and Mullen, 1972).1 This change in lumi-
nosity is a fundamental effect of the conversion of hydro-
gen to helium and the resulting change in solar struc-
ture; thus the attempts to eliminate it resorted to rather
drastic measures, such as suggestions for changes to the
gravitational constant. As noted by Sagan and Mullen,
a far more likely explanation is a readjustment of con-
ditions in the Earth’s atmosphere to compensate for the
change in luminosity. A more serious concern was the
fact that attempts to detect the neutrinos created by the
fusion reactions in the solar core found values far below
the predictions. This evidently raised doubts about the
computations of solar models, and hence on the general
understanding of stellar evolution, and led to a number
of suggestions for changing the models such as to bring
them into agreement with the neutrino measurements.

The last three decades have seen a tremendous growth
in our information about the solar interior, through the
detection and extensive observation of oscillations of the
solar surface. Analyses of these oscillations, appropri-
ately termed helioseismology, have resulted in extremely
precise and detailed information about the properties of
the solar interior, rivaling or in some respects exceeding
our knowledge about the interior of the Earth.

II. EARLY HISTORY OF HELIOSEISMOLOGY

The development of helioseismology has to a large ex-
tent been driven by observations. Hence in the following
I provide an overview of the evolution of observations
of solar oscillations. Discussions of the development of
helioseismic inferences follow in later sections.

It is possible that the first indications of solar oscil-
lations were detected by Plaskett (1916), who observed
fluctuations in the solar surface Doppler velocity in mea-
surements of the solar rotation rate. It was not clear,
however, whether the fluctuations were truly solar or
whether they were induced by effects in the Earth’s atmo-
sphere. The solar origin of these fluctuations was estab-
lished by Hart (1954, 1956). However, the first definite

1The change in luminosity was noted by Schwarz-
schild (1958) who speculated about possible geological
consequences.
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observations of oscillations of the solar surface were made
by Leighton et al. (1962). They detected roughly peri-
odic oscillations in local Doppler velocity with periods
of around 300 s and a lifetime of at most a few peri-
ods. Strikingly, they noted the potential for using the
observed period to probe the properties of the solar at-
mosphere. A confirmation of the initial detection of the
oscillations was made by Evans and Michard (1962). The
observations by Leighton et al. (1962) also led to the de-
tection of convective motion on supergranular scales. As
discussed in section X.B, the study of solar oscillations
and supergranulation has recently come together again.

Early observations of the five-minute oscillations were
of short duration and limited spatial extent. With only
such information, the oscillations were generally inter-
preted as local phenomena in the solar atmosphere, of
limited spatial and temporal coherence, possibly waves
induced by penetrating convection (e.g., Bahng and
Schwarzschild, 1963). However, attempts at determin-
ing their structure were made by several authors, in-
cluding Frazier (1968); through observations and Fourier
transforms of the oscillations as a function of position
and time, he could make power spectra as a function of
wavenumber and frequency, showing some localization of
power. Such observations indicated a less superficial na-
ture of the oscillations, and inspired major theoretical
advances in the understanding of their nature: Ulrich
(1970) and Leibacher and Stein (1971) proposed that
the observations resulted from standing acoustic waves
in the solar interior. Such calculations were further de-
veloped by Wolff (1972) and Ando and Osaki (1975),
who found that oscillations in the relevant frequency and
wavenumber range may be linearly unstable. However,
the definite breakthrough were the observations by Deub-
ner (1975) which for the first time identified ridges in
the wavenumber-frequency diagram, reflecting the modal
structure of the oscillations. Similar observations were
reported by Rhodes et al. (1977), who furthermore com-
pared the frequencies with computed models to obtain
constraints on the properties of the solar convection zone.

The year of 1975 was indeed the annus mirabilis of
helioseismology. An important event was the announce-
ment by H. A. Hill of the detection of oscillations in the
apparent solar diameter (see Hill et al., 1976; Brown et
al., 1978). This was the first suggestion of truly global os-
cillations of the Sun and immediately indicated the pos-
sibility of using such data to investigate the properties of
the solar interior (e.g., Scuflaire et al., 1975; Christensen-
Dalsgaard and Gough, 1976; Iben and Mahaffy, 1976;
Rouse, 1977). Simultaneously, Brookes et al. (1976) and
Severny et al. (1976) announced independent detections
of a solar oscillation with a period of 160 min, with simi-
larly interesting diagnostic potentials. Even though these
detections have since been found to be of likely non-solar
origin, they played a very important role as inspiration

for the development of helioseismology.
(For the present author, the announcement by Hill was

particularly significant. It took place at a conference in
Cambridge in the Summer of 1975. I was engaged, with
Douglas Gough, in modeling solar structure and oscilla-
tions, as part of an investigation of mixing induced by
oscillations as a possible explanation of the solar neu-
trino problem. As a result, we had available solar mod-
els and programmes for computing their frequencies. Hill
presented an observed spectrum and I was able, the fol-
lowing day, to compare it with frequencies computed for
a model; the agreement was quite striking. It has since
transpired that the observations had little to do with
global oscillations of the Sun; and the model was surely
far too crude for such a comparison. Even so, the event
was a major personal turning point, directing my scien-
tific efforts towards helioseismology.)

The next major observational step was the identifi-
cation by Claverie et al. (1979) of modal structure of
five-minute oscillations in Doppler-velocity observations
in light integrated over the solar disk. Such observations
are sensitive only to oscillations of the lowest spherical-
harmonic degree, and hence these were the first confirmed
detection of truly global modes of oscillations. The fre-
quency pattern, with regularly spaced peaks, matched
theoretical predictions based on the asymptotic theory
of acoustic modes of high radial order (Christensen-
Dalsgaard and Gough, 1980a; see also Section V.C.3).
Further observations, with much higher frequency reso-
lution, were made from the Geographical South Pole dur-
ing the austral summer 1979–80 (Grec et al., 1980); these
resolved the individual multiplets in the low-degree spec-
trum and allowed a comparison between the frequency
data, including also the so-called small frequency sepa-
ration, and solar models. The structure of the frequency
spectrum was analyzed asymptotically by Tassoul (1980).
It was pointed out by Gough (1982) that the small sepa-
ration was related to the curvature of sound speed in the
solar core; thus it would, for example, provide evidence
for mixing of material in the core (see Section V.C.3).

The existence of oscillations in the five-minute range,
both a low degree as detected by Claverie et al. (1979)
and at high wavenumbers as found by Deubner (1975),
strongly suggested a common cause (e.g., Christensen-
Dalsgaard and Gough, 1982). The gap between these
observations was filled by Duvall and Harvey (1983), who
made detailed observations at intermediate degree. This
also allowed a definite identification of the order of the
modes, even at low degree, by establishing the connection
with the high-degree modes for which the order could be
directly determined. By providing a full range of modes
these and subsequent observations opened the possibili-
ties for detailed inferences of properties of the solar in-
terior, such as the internal solar rotation (Duvall et al.,
1984) and the sound speed (Christensen-Dalsgaard et al.,
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1985).

III. OVERALL PROPERTIES OF THE SUN

The Sun is unique amongst stars in that its proper-
ties are known with high precision. The product GM�,
where G is the gravitational constant and M� is the
mass of the Sun, is known with very high accuracy
from planetary motion. Thus the factor limiting the
accuracy of M� is the value of G; the commonly used
value is M� = 1.989 × 1033 g. The solar radius R�
follows from the apparent diameter and the distance
to the Sun. Most recent computations of solar mod-
els have used R� = 6.9599 × 1010 cm (Auwers, 1891).2

The solar luminosity L� is determined from satellite ir-
radiance measurements, suitably averaged over the vari-
ation of around 0.1 % during the solar cycle (e.g., Will-
son and Hudson, 1991; Pap and Fröhlich, 1999); a com-
monly used value is L� = 3.846× 1033 erg s−1. Finally,
the age of the Sun is obtained from age determinations
for meteorites, combined with modeling of the forma-
tion history of the solar system (e.g., Guenther, 1989;
Wasserburg, in Bahcall and Pinsonneault, 1995). Based
on a careful analysis, Wasserburg estimated the age as
t� = (4.566± 0.005)× 109 yr.

The composition of stellar matter is traditionally char-
acterized by the relative abundances by mass X, Y and
Z of hydrogen, helium and ‘heavy elements’ (i.e., ele-
ments heavier than helium). The solar surface compo-
sition can in principle be determined from spectroscopic
analysis. In practice, the principle works for most ele-
ments heavier than helium; for elements with lines in the
solar photospheric spectrum, abundances can be deter-
mined with reasonable precision, although often limited
by uncertainties in the relevant basic atomic parameters
and in the modeling of the solar atmosphere (e.g., As-
plund et al., 2000b), as well as by blending with weak
lines (e.g., Allende Prieto et al., 2001). The relative
abundances so obtained are generally in good agreement
with solar-system abundances as inferred from meteorites
(e.g., Anders and Grevesse, 1989; Grevesse and Sauval,
1998). A striking exception is the abundance of lithium,
which is lower by about a factor 150, relative to silicon,
in the Sun than in meteorites. There have been sugges-

2Brown & Christensen-Dalsgaard (1998) obtained the value
of (695.508± 0.026) Mm from a careful analysis of daily tim-
ings at noon of solar transits with a telescope fixed in the di-
rection of the meridian, combined with modeling of the limb
intensity; this value refers to the solar photosphere, defined
as the point where the temperature equals the effective tem-
perature. This value has not yet been used for detailed solar
modeling, however.

tions that the beryllium abundance is lower also, but the
most recent determinations seems to indicate that the
solar beryllium abundance is similar to the meteoritic
value (e.g., Balachandran and Bell, 1998). As discussed
in Section XI these observations are of great interest in
connection with investigations of solar internal structure
and dynamics.

The noble gases, including helium, do not have lines
in the photospheric spectrum as a result of the large ex-
citation energies of the relevant atomic transitions. It
is true that helium can be detected in the solar spec-
trum, but only through lines formed high in the solar
atmosphere where conditions are complex and uncertain
and a reliable abundance determination is therefore not
possible. As a result, the solar helium abundance is not
known from ‘classical’ observations. Typically, the ini-
tial abundance Y0 by mass is used as a free parameter
in solar-model calculations. On the other hand, spectro-
scopic data do provide a measure of the ratio Zs/Xs of
the present surface abundances heavy elements and hy-
drogen; commonly used values are 0.0245 (Grevesse and
Noels, 1993) and 0.023 (Grevesse and Sauval, 1998).

Solar surface rotation can be determined by following
the motion of features on the solar surface (e.g., sunspots)
as they move across the solar disk, or through Doppler
measurements. The angular velocity Ω obtained from
Doppler measurements, as a function of co-latitude θ,
can be fitted by the following relation

Ω

2π
= 451.5 nHz− 65.3 nHz cos2 θ − 66.7 nHz cos4 θ (1)

(Ulrich et al., 1988), although there are significant depar-
tures from this relation, as well as variations with time
(see also Section IX).

IV. SOLAR STRUCTURE AND EVOLUTION

A. ‘Standard’ solar models

As a background for the discussion of the helioseismi-
cally inferred information about the solar internal struc-
ture, it is useful briefly to summarize the principles of
computation of ‘standard’ solar models.3 Such models
are assumed to be spherically symmetric, ignoring ef-
fects of rotation and magnetic field. In that case, the
basic equations of stellar structure can be written

3Further discussion of such models, and detailed results,
have been provided by, for example, Bahcall and Pinsonneault
(1992, 1995), Christensen-Dalsgaard et al. (1996), Brun et al.
(1998), and Bahcall et al. (2001).
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dp

dr
= −Gmρ

r2
, (2a)

dm

dr
= 4πr2ρ , (2b)

dT

dr
= ∇T

p

dp

dr
, (2c)

dL

dr
= 4πr2

[
ρε− ρ d

dt

(
u

ρ

)
+
p

ρ

dρ

dt

]
. (2d)

Here r is distance to the center, p is pressure, m is the
mass of the sphere interior to r, ρ is density, T is tem-
perature, L is the flow of energy per unit time through
the sphere of radius r, ε is the rate of nuclear energy
generation per unit mass and time, and u is the internal
energy per unit volume.4 Also, the temperature gradient
has been characterized by ∇ = d lnT/d lnp and is deter-
mined by the mode of energy transport. Where energy is
transported by radiation, ∇ = ∇rad, where the radiative
gradient is given by

∇rad =
3

16πac̃G

κp

T 4

L(r)

m(r)
; (3)

here c̃ is the speed of light, a is the radiation density con-
stant and κ is the opacity, defined such that 1/(κρ) is the
mean free path of a photon. In regions where ∇rad ex-
ceeds the adiabatic gradient ∇ad = (∂ lnT/∂ lnp)s, the
derivative being taken at constant specific entropy s, the
layer becomes unstable to convection. In that case en-
ergy transport is predominantly by convective motion; as
discussed below, the detailed description of convection is
highly uncertain.

Energy generation in the Sun results from the fusion
of hydrogen into helium. The net reaction can be written
as

4 1H→ 4He + 2e+ + 2νe , (4)

satisfying the constraints of conservation of charge and
lepton number. Here the positrons are immediately an-
nihilated, while the electron neutrinos escape the Sun
essentially without reacting with matter and therefore
represent an immediate energy loss. The actual path by
which this net reaction takes place involves different se-
quences of reactions, depending on the temperature (for
details, see for example Bahcall, 1989). These reactions
differ substantially in the neutrino energy loss and hence
in the energy actually available to the star.

The change in composition resulting from Eq. (4)
largely drives solar evolution. Until fairly recently, ‘stan-
dard’ solar model calculations did not include any other

4During most of the evolution of the Sun, the last two terms
in Eq. (2d) are very small compared to the nuclear term.

effects that changed the composition. However, No-
erdlinger (1977) pointed out the potential importance of
diffusion of helium in the Sun. Strong evidence for the
importance of diffusion and settling has since come from
helioseismology (see Section VII.A) and these processes
are now generally included in the calculations.5 Specif-
ically, the rate of change of the hydrogen abundance is
written

∂X

∂t
= RH +

1

r2ρ

∂

∂r

[
r2ρ

(
DH

∂X

∂r
+ VHX

)]
; (5)

here RH is the rate of change in the hydrogen abundance
from nuclear reactions, DH is the diffusion coefficient and
VH is the settling speed. Similar equations are of course
satisfied for the abundances of other elements. In Eq. (5),
the term in DH∂X/∂r tends to smooth out composition
gradients, whereas the term in the settling velocity leads
to separation, hydrogen rising towards the surface and
heavier elements including helium sinking towards the
interior.

The basic equations of stellar structure and evolution,
Eqs (2) and (5), are relatively simple; also, the numeri-
cal techniques for solving them are well established and
well tested in the case of solar models. However, the ap-
parent simplicity hides a great deal of complexity, often
combined under the heading of ‘microphysics’. To com-
plete the equations, their right-hand sides must be ex-
pressed in terms of the basic variables {p,m, T, L,Xi},
where Xi denotes the abundances of the relevant ele-
ments. This requires expressions for the density ρ and
other thermodynamic variables, for the opacity κ, for
the energy generation rate ε and the rates of change of
composition Ri, as well as for the diffusion and settling
coefficients. At the level of precision required for solar
modeling, each of these components involves substantial
physical subtleties. The thermodynamic quantities are
obtained from an equation of state, which as a minimum
requirement (although not always met) must satisfy ther-
modynamic consistency. Two conceptually very differ-
ent formulations are in common use: one is the so-called
‘chemical picture’ where the equation of state is based on
an expression for the free energy of a system consisting
of atoms, ions, etc., containing the relevant physical ef-
fects; the second is the ‘physical picture’, which assumes
as building blocks only fundamental particles (nuclei and
electrons), and treats density effects by means of a sys-
tematic expansion (for reviews, see for example Däppen,
1998; Däppen and Guzik, 2000). A representative and
commonly used example of the chemical picture is the

5e.g., Wambsganss (1988), Cox et al. (1989), Proffitt and
Michaud (1991), Proffitt (1994), Guenther et al. (1996),
Richard et al. (1996), Gabriel (1997), Morel et al. (1997),
and Turcotte et al. (1998).
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so-called MHD equation of state (Mihalas et al., 1988).
The physical picture has been implemented by the OPAL
group (Rogers et al., 1996). In the opacity calculation
the detailed distribution of the atoms on ionization and
excitation states must be taken into account, obviously
requiring a sufficiently accurate equation of state (see
Däppen and Guzik, 2000). The most commonly used
opacity tables are those of the OPAL group (Iglesias
and Rogers, 1996). Computation of the energy genera-
tion and composition changes obviously requires nuclear
cross sections, the determination of which is greatly com-
plicated by the low typical reaction energies relevant to
stellar interiors; recently, two major compilations of nu-
clear parameters have been published by Adelberger et
al. (1998) and Angulo et al. (1999). Additional compli-
cations result from the partial screening of the Coulomb
potential of the reacting nuclei by the stellar plasma; the
so-called weak-screening approximation (Salpeter, 1954)
is still in common use.6 Expressions for the diffusion and
settling coefficients have been provided by, for example,
Michaud and Proffitt (1993) and Thoul et al. (1994).

In the Sun, convection occurs in the outer about 29%
of the solar radius; this is visible on the solar surface
in the form of motion and other fluctuations in the so-
called granulation and supergranulation. In the convec-
tively unstable regions, modeling requires a relation to
determine the convective energy transport from the local
structure; particularly important is the superadiabatic
gradient, i.e., the difference between the actual tempera-
ture gradient ∇ and the adiabatic value ∇ad, which con-
trols both the dynamics of the convective motion and the
net energy transport. In model calculations this relation
is typically obtained from simple recipies, and charac-
terized by one or more parameters that determine con-
vective efficacy. A characteristic example is the mixing-
length treatment (Böhm-Vitense, 1958), parametrized
by the mixing-length parameter αc which measures the
mean free path of convective eddies in units of the local
pressure scale height. Also, it is common to neglect the
dynamical effects of convection, generally described as a
turbulent pressure. In most of the solar convection zone,
convection is so efficient that the actual temperature gra-
dient is very close to the adiabatic value. Near the sur-
face, however, where the density is low, a fairly substan-
tial superadiabatic gradient is required to transport the
energy. The effect of the parametrization of the convec-
tion treatment through, e.g., αc is to control the degree
of superadiabaticity and hence, effectively, the adiabat

6A careful analysis of Salpeter’s result was provided by
Brüggen and Gough (1997). For different treatments, see,
for example, Gruzinov and Bahcall (1998) and Shaviv and
Shaviv (2001). Bahcall et al. (2002) gave a critical discussion
of these issues.

of the nearly adiabatic part of the convection zone (cf.
Gough & Weiss, 1976).

A more realistic description of the uppermost part of
the convection zone is possible through detailed three-
dimensional and time-dependent hydrodynamical simu-
lations, taking into account radiative transfer in the at-
mosphere (e.g., Stein and Nordlund, 1998a). Such simu-
lations successfully reproduce the observed surface struc-
ture of solar granulation (e.g., Nordlund and Stein, 1997),
as well as detailed profiles of lines in the solar radia-
tive spectrum, without the use of parametrized models
of turbulence (Asplund et al., 2000a). The simulations
only cover a very small fraction of the solar radius, and
are evidently far too time-consuming to be included in
general solar modeling. Rosenthal et al. (1999) extrapo-
lated an averaged simulation through the adiabatic part
of the convection zone by means of a model based on the
mixing-length description, demonstrating that the adia-
bat predicted by the simulation was essentially consis-
tent with the depth of the solar convection zone as deter-
mined from helioseismology (see Section VII). Also, Li et
al. (2002) developed an extension of mixing-length the-
ory, including effects of turbulent pressure and kinetic
energy, based on numerical simulations of near-surface
convection.

FIG. 1. Hydrogen mass fraction X as a function of fractional
radius in a model of the present Sun (Model S of Christensen-
Dalsgaard et al., 1996). The insert shows details of the be-
havior near the base of the convection zone.

The computation of a model of the present Sun typ-
ically starts from the so-called zero-age main sequence,
where the model can be assumed to be of uniform compo-
sition, with nuclear reactions providing the energy out-
put; however, models have also been computed starting
during the earlier phase of gravitational contraction (e.g.,
Morel et al., 2000). The model is characterized by the
mass (generally assumed to be constant during the evolu-
tion) and the initial composition, specified by the abun-
dances X0, Y0 and Z0. In addition, parameters charac-
terizing convective energy transport, such as the mixing-
length parameter αc, must be specified. The model at
the age of the present Sun must match the present so-
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lar radius and luminosity, as well as the observed ratio
Zs/Xs of the abundance of heavy elements to hydrogen
at the surface. This is achieved by adjusting αc and Y0,
which largely control the radius and luminosity, and the
initial heavy-element abundance Z0.

To illustrate some properties of models of the present
Sun, Fig. 1 shows the hydrogen-abundance profile X.7

The abundance is uniform in the outer convection zone,
extending from the surface to r = 0.711R, which is fully
mixed; as a result of helium settling, X has increased by
about 0.03 relative to its initial value of 0.709. Just below
the convection zone, helium settling has caused a sharp
gradient in the hydrogen abundance. In the inner parts of
the model the hydrogen abundance has been reduced due
to nuclear fusion. Detailed tables of model quantities,
from a slightly different calculation, were provided by
Bahcall and Pinsonneault (1995).

B. Solar neutrinos

As indicated in Eq. (4), hydrogen fusion in the Sun
unavoidably produces electron neutrinos. It is easy to
estimate, from the solar energy flux, that the total flux of
solar neutrinos at the Earth is around 7×1010 cm−2 s−1.
This depends little on the details of the nuclear reac-
tions in the solar core, as long as the solar energy output
derives solely from nuclear reactions. However, the en-
ergy spectrum of the neutrinos depends sensitively on the
branching between the various reactions. This is particu-
larly true of the highest-energy neutrinos, which are pro-
duced by a relatively rare and very temperature-sensitive
reaction. This is of crucial importance to attempts to de-
tect neutrinos from the Sun.

A detailed description of the issues related to so-
lar neutrinos, including their detection, was given by
Bahcall (1989). More recent reviews have been pro-
vided by, for example, Haxton (1995), Castellani et al.
(1997), Kirsten (1999), and Turck-Chièze (1999). Un-
til recently, three classes of experiments had been car-
ried out to detect solar neutrinos. The first experi-
ment, where the νe reacted with chlorine, was estab-
lished by R. Davis in the Homestake Gold Mine, South
Dakota, and yielded its initial results in 1968 (Davis et
al., 1968), providing an upper limit on the capture rate
of 3 SNU (Solar Neutrino Units; 1 SNU corresponds
to 10−36 reactions per target atom per second). This
was substantially below the expected flux (e.g., Bahcall,
Bahcall & Shaviv, 1968). The latest average measured
value is 2.56± 0.16(statistical)± 0.16(systematic) SNU

7Extensive sets of variables for Model S of Christensen-
Dalsgaard et al. (1996) are available at
http://astro.ifa.au.dk/∼jcd/solar models/.

(Cleveland et al., 1998); this is to be compared to typical
model predictions of around 8 SNU (e.g., Bahcall et al.,
2001; Turck-Chièze et al., 2001a).

This experiment is most sensitive to high-energy neu-
trinos, and hence the predictions depend on the solar
central temperature to a high power. Thus attempts
to explain the discrepancy, known as the ‘solar neutrino
problem’, generally aimed at lowering the core tempera-
ture of the model, for example by postulating a rapidly
rotating core such that the central pressure, and therefore
the central temperature, would be reduced by centrifugal
effects (e.g., Bartenwerfer, 1973; Demarque et al., 1973).
Another suggestion was an inhomogeneous composition,
the interior being lower in heavy elements than the con-
vection zone; this would reduce the opacity and hence
the core temperature (e.g., Joss, 1974). A similar effect
would result if energy transport in the Sun were to take
place in part by non-radiative means, such as through
motion of postulated weakly interacting massive particles
(e.g., Faulkner and Gilliland, 1985; Spergel and Press,
1985; Gilliland et al., 1986). Substantial mixing of the
core was also proposed; by increasing the amount of hy-
drogen in the core, this would reduce the temperature re-
quired to generate the solar luminosity and hence reduce
the neutrino flux (e.g., Ezer and Cameron, 1968; Bahcall,
Bahcall, and Ulrich, 1968; Schatzman et al., 1981). An
interesting variant on this idea, appropriately called ‘the
solar spoon’, was proposed by Dilke and Gough (1972):
according to this the solar core was mixed about a mil-
lion years ago due to the onset of instability to oscilla-
tions, and the present luminosity derives in part from the
readjustment following this mixing, reducing the rate of
nuclear energy generation and hence the neutrino flux.
Detailed calculations have confirmed the required insta-
bility (e.g., Christensen-Dalsgaard et al., 1974; Boury et
al., 1975); however, it has not been definitely determined
whether or not the subsequent nonlinear development of
the oscillations may lead to mixing.

It should be emphasized that such non-standard mod-
els are constructed to satisfy the constraint of the ob-
served solar radius and luminosity; thus, although they
may account for the observed neutrino flux, there is no
independent way of testing them or choosing between
them on the basis of ‘classical’ observations. This is
clearly a rather unsatisfactory situation. As discussed in
Section VII, helioseismology has provided tests of these
non-standard models.

Other experiments have confirmed the discrepancy
between the observed neutrino flux and the predic-
tions of standard solar models. Measurements at the
Kamiokande and Super-Kamiokande facilities of neu-
trino scattering on electrons in water, which detect only
the rare high-energy neutrinos, yield a flux smaller by
about a factor two than the standard models (e.g.,
Fukuda et al., 2001); these measurements are sensi-
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tive to the direction of arrival of the neutrinos and
in this way confirm their solar origin. Detection also
of the lower-energy neutrinos has been made in the
GALLEX and SAGE experiments through neutrino cap-
ture in gallium. For GALLEX the resulting measured
detection rate is 77.5± 6.2(statistical)± 4.5(systematic)
SNU (Hampel et al., 1999) while the result for SAGE
is 75.4± 6.9(statistical)± 3.2(systematic) SNU (Gavrin,
2001; see also Abdurashitov et al., 1999); these are again
substantially lower than the model predictions of around
130 SNU.

Although these discrepancies clearly raise doubts
about solar modeling, their origin may instead be in the
properties of the neutrinos. In addition to the electron
neutrino, two other types of neutrinos, the muon neu-
trino νµ and the tau neutrino ντ , are known. If neutrinos
have finite mass these three types may couple, and hence
the electron neutrinos generated in the solar core may
be converted into neutrinos of the other types, to which
current experiments are less sensitive. A mechanism of
this nature, the so-called MSW effect, was proposed by
Wolfenstein (1978) and Mikheyev and Smirnov (1985).
Here the neutrinos oscillate between the different states
through interaction with matter in the Sun; by choos-
ing appropriately the relevant parameters, it is possible
to bring the measured and computed neutrino capture
rates into agreement. A confirmation that such a mech-
anism may operate has been obtained through measure-
ments of oscillations of muon neutrinos generated in the
Earth’s atmosphere (e.g., Fukuda et al., 1998). For a re-
cent overview of neutrino oscillations, see Bahcall et al.
(1998).

Very recently new measurements have been announced
from the Sudbury Neutrino Observatory, which strongly
support the presence of neutrino oscillations and are con-
sistent with the standard solar model (Ahmad et al.,
2001). Here measurements of high-energy neutrinos are
made through the interaction with deuterium, in the form
of heavy water. This reaction is only sensitive to νe. The
measured flux is significantly lower than the flux obtained
at Super-Kamiokande through electron scattering, which
has some sensitivity to νµ and ντ . Thus the difference
between the two measurements provides an indirect mea-
sure of the conversion of νe into νµ and ντ , and hence of
the flux of neutrinos originating from the Sun. The result
agrees, within errors, with standard solar models.

Given this striking confirmation of the existence of neu-
trino oscillations, the emphasis of solar neutrino research
is shifting towards using the measurements to constrain
the properties of the neutrinos. This evidently requires
secure constraints on the rate of neutrino production in
the Sun. In Section VII.C I return to the possible impor-
tance of helioseismology in this regard.

C. The rotation of the Sun

As mentioned in Section III, the solar surface displays
differential rotation, the rotation period varying from
around 25 d at the equator to more than 30 d near the
poles. Different measures of the rotation give somewhat
different results. For example, the rotation rates of mag-
netic features are generally a few per cent higher than the
photospheric rate as determined from Doppler-velocity
measurements (for a recent review, see Beck, 2000). As
the magnetic field is likely anchored at some depth be-
neath the solar surface, this suggests the presence of an
increase in rotation rate with depth.

There is as yet no firm theoretical understanding of
the rotation of the Sun and its evolution with time. It
is normally assumed that stars rotate rapidly when they
are formed and subsequently slow down; indeed, one ob-
serves a strong correlation between age and rotation rate
amongst solar-type stars (e.g., Skumanich, 1972). The
loss of angular momentum probably takes place through
a stellar wind, magnetically coupled to the outer con-
vection zone (e.g., Mestel, 1968). However, it is not
clear how the convection zone is coupled rotationally to
the radiative interior or how angular momentum may be
transported from the deep interior towards the surface.
Thus while the convection zone is braked, the star might
still retain a rapidly rotating core. In fact, evolution
calculations taking rotation into account, and assuming
angular-momentum transport in the interior as a result
of hydrodynamical instabilities, have found the rotation
of the deep interior of the model of the present Sun to be
several times higher than the surface rotation rate (e.g.,
Pinsonneault et al., 1989; Chaboyer et al., 1995). A suffi-
ciently rapidly rotating core could affect solar structure;
also, the resulting distortion of the Sun’s external gravi-
tational field might compromise tests of Einstein’s theory
of general relativity based on observations of planetary
motion (e.g., Dicke, 1964; Nobili and Will, 1986). Fi-
nally, the instabilities invoked to transport angular mo-
mentum could also lead to partial mixing of the solar in-
terior, hence affecting its evolution. Thus it is evidently
important to obtain secure information about the solar
internal rotation and the evolution of stellar rotation.

The rotation within the convection zone, and hence
the surface differential rotation, is likely controlled by
angular-momentum transport by the convective motions.
Early hydrodynamical models (e.g., Glatzmaier, 1985;
Gilman and Miller, 1986) indicated that rotation depends
predominantly on the distance to the rotation axis, as
suggested by the Taylor-Proudman theorem (e.g., Ped-
losky, 1987; see also Miesch, 2000). Thus the observed
surface variation with latitude would translate into a de-
crease in rotation rate with depth, at the solar equator,
in apparent conflict with the inferences from different
measures of surface rotation. However, these and other

8



models are certainly far from resolving all the relevant
scales of convection, and hence the results must still be
regarded as somewhat uncertain. I return to these prob-
lems in Section XI, in the light of the helioseismic infer-
ences of solar internal rotation.

D. Solar magnetic activity

Because of proximity of the Sun, phenomena on its sur-
face and in its atmosphere can be studied in great, and
often bewildering, detail (for a recent detailed overview,
see Schrijver and Zwaan, 2000). These phenomena are
closely related to magnetic fields and occasionally give
rise to explosions and ejections into the solar wind of
matter and magnetic fields which may harm satellites in
orbit near the Earth and interfere with radio communica-
tion and power grids. Thus there is substantial practical
interest in a better understanding of the solar magnetic
activity and, if possible, predictions of eruptions.

At the photospheric level the most visible manifesta-
tion of the activity are the sunspots, which have been ob-
served fairly systematically over the last four centuries.
Sunspots are areas of somewhat lower temperature, and
hence lower luminosity, than the rest of the photosphere.
Here convective energy transport is partly suppressed by
a strong magnetic field emerging through the solar sur-
face; typical field strengths are up to 0.4 Tesla. Sunspots
often occur in pairs with opposite polarity, which may
correspond to a loop of magnetic flux anchored in the
solar interior.

The most striking aspect of the sunspots and other
related phenomena is the variation with time: the num-
ber of sunspots vary with a period of roughly 11 years.
Observations of the solar magnetic field show that it re-
verses between sunspot minima; hence the full, magnetic
solar cycle has a period of 22 years. However, there are
considerable variations in the length of the cycle and the
number of spots at solar maximum activity. Interest-
ingly, there were virtually no sunspots during the period
1640 – 1710 (the so-called Maunder minimum), where
the Sun was already observed regularly (e.g., Ribes and
Nemes-Ribes, 1993; Hoyt and Schatten, 1996).

The origin of the solar magnetic activity and its varia-
tion with time is likely to involve interactions, often de-
scribed as dynamo processes, between rotation and mo-
tion of the solar plasma within or just beneath the solar
convection zone (e.g., Gilman, 1986; Choudhuri, 1990;
Parker, 1993; Cattaneo, 1997; Charbonneau and Mac-
Gregor, 1997). Thus an understanding of the cause of
the solar cyclic variation depends on knowledge about
the solar internal rotation.

V. STELLAR OSCILLATIONS

In order to understand the diagnostic potential of so-
lar oscillations, some basic insight into the properties of
stellar oscillations is required.8 The observed oscillations
have extremely small amplitudes and hence can be de-
scribed as linear perturbations, around the solar models
resulting from evolution calculations. As a result, the
frequencies provide a direct diagnostic of the properties
of the solar interior: given a solar model, the relevant
aspects of the frequencies can be computed very pre-
cisely, and the differences between the observed and the
computed frequencies can be related to the errors in the
model.

A. Equations and boundary conditions

1. Some basic hydrodynamics

A hydrodynamical system is characterized by speci-
fying the physical quantities as functions of position r
and time t. These properties include, e.g., the local den-
sity ρ(r, t), the local pressure p(r, t), as well as the local
instantaneous velocity v(r, t). For helioseismology, the
most important aspects of the system concern its me-
chanical properties. Conservation of mass is expressed
by the equation of continuity:

∂ρ

∂t
+ div (ρv) = 0 . (6)

In stellar interiors the viscosity in the gas can generally
be neglected, and the relevant forces are in most cases
just pressure and gravity. Then the equations of motion
(also known as Euler’s equations) can be written as

ρ

(
∂v

∂t
+ ρv · ∇∇∇v

)
= −∇∇∇p+ ρg , (7)

where, on the left-hand side, the quantity in brackets is
the time derivative of velocity in a fluid parcel follow-
ing the motion. The first term on the right-hand side
is the surface force, given by the pressure p, while the
second term is given by the gravitational acceleration g,
obtained from the gradient of the gravitational poten-
tial Φ, g = −∇∇∇Φ, where Φ satisfies Poisson’s equation,
∇2Φ = 4πGρ.

To complete the description, we need to relate p and
ρ. In general, this requires consideration of the energetics

8A much more detailed description of general stellar oscilla-
tions was provided by Unno et al. (1989), while Gough (1993)
discussed aspects more directly relevant to helio- and aster-
oseismology. The classical review by Ledoux and Walraven
(1958) still repays careful study.
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of the system, as described by the first law of thermody-
namics. However, in most of the star the time scale for
energy exchange is much longer than the relevant pulsa-
tion periods. Then the motion is essentially adiabatic,
satisfying the adiabatic approximation

dp

dt
=

Γ1p

ρ

dρ

dt
, (8)

where Γ1 = (∂ lnp/∂ ln ρ)s, and d/dt denotes the time
derivative following the motion. We shall use this ap-
proximation in most of the analysis of solar oscillations.
It breaks down near the stellar surface, where the local
thermal time scale becomes very short. However, as dis-
cussed in Section V.B this is only one amongst a number
of problems in the treatment of this region, which must
be taken into account in the analysis of the observed solar
oscillation frequencies.

2. The linear approximation

We now regard the oscillations as small perturbations
around a stationary equilibrium model, assumed to be
a normal spherically symmetric stellar evolution model.
Thus it satisfies Eqs (2a) and (2b) of stellar structure,
with

g0 = −Gm0

r2
ar , (9)

where equilibrium quantities are characterized by sub-
script ‘0’, and ar is a unit vector in the radial direction.

To describe the oscillations we write, for example, pres-
sure as

p(r, t) = p0(r) + p′(r, t) , (10)

where p′ is a small perturbation. Here p′ is the Eulerian
perturbation, that is, the perturbation at a given spatial
point. In addition to the velocity v, we introduce the
displacement δδδr of fluid elements resulting from the per-
turbation, such that v = ∂δδδr/∂t. It is also convenient to
consider Lagrangian perturbations, in a reference frame
following the motion. The Lagrangian perturbation to
pressure, for example, may be calculated as

δp(r) = p(r + δδδr)− p0(r) = p′(r) + δδδr · ∇∇∇p0 . (11)

To obtain the lowest-order (linear) equations for the
perturbations, we insert expressions such as Eq. (10) into
the full equations, subtract equilibrium equations, and
neglect quantities of order higher than one in p′, ρ′, v, etc.
For the continuity equation the result is, after integration
with respect to time,

ρ′ + div (ρ0 δδδr) = 0 . (12)

The equations of motion become

ρ0
∂2δδδr

∂t2
= ρ0

∂v

∂t
= −∇∇∇p′ + ρ0g′ + ρ′g0 , (13)

where, obviously, g′ = −∇∇∇Φ′. The perturbation Φ′ to
the gravitational potential satisfies the perturbed Poisson
equation

∇2Φ′ = 4πGρ′ . (14)

We finally assume the adiabatic approximation,
Eq. (8), to obtain

∂ δp

∂t
− Γ1,0p0

ρ0

∂ δρ

∂t
= 0 , (15)

or, by integrating over time and expressing it on Eulerian
form,

p′ + δδδr · ∇∇∇p0 =
Γ1,0p0

ρ0
(ρ′ + δδδr · ∇∇∇ρ0) . (16)

3. Equations of linear adiabatic stellar oscillations

Assuming a spherically symmetric and time-indepen-
dent equilibrium, the solution is separable in time, and in
the angular coordinates (θ, φ) of the spherical polar co-
ordinates (r, θ, φ) (where θ is co-latitude, i.e., the angle
from the polar axis, and φ is longitude). Then, time de-
pendence is naturally expressed as a harmonic function,
characterized by a frequency ω; for instance, the pressure
perturbation is written on complex form as

p′(r, θ, φ, t) = <[p̃′(r)f(θ, φ) exp(−iωt)] . (17)

Here f(θ, φ), which remains to be specified, describes the
angular variation of the solution and, as indicated, the
amplitude function p̃′ is a function of r alone. For sim-
plicity, I also drop the subscript ‘0’ on equilibrium quan-
tities.

Given a time dependence of this form, Eqs (13) can be
written as

ω2δδδr =
1

ρ
∇∇∇p′ − g′ − ρ′

ρ
g , (18)

which has the form of a linear eigenvalue problem, ω2

being the eigenvalue. Indeed, the right-hand side can be
regarded as a linear operator F(δδδr) on δδδr: in the adia-
batic approximation p′ is related to ρ′ by Eq. (16), and ρ′,
in turn, can be obtained from δδδr by using Eq. (12); also,
given ρ′, Φ′ and hence g′ can be obtained by integrating
Eq. (14). I return to this formulation of the problem in
Section V.D, below.

To obtain the proper form of f(θ, φ) in Eq. (17), we
first express the displacement vector as

δδδr = ξrar + ξξξh ,
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where ξξξh is the tangential component of the displace-
ment. We now take the tangential divergence divh of
the equations of motion, and use the tangential part of
the continuity equation to eliminate divh ξξξh. In the re-
sulting equation, derivatives with respect to θ and φ only
occur in the combination ∇2

h, where

∇2
h =

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

is the tangential part of the Laplace operator. The same
is obviously true of Poisson’s equation. This shows that
separation in the angular variables can be achieved in
terms of a function f(θ, φ) which is an eigenfunction of
∇2

h,

∇2
hf = − 1

r2
Λf , (19)

where Λ is a constant. A complete set of solutions to this
eigenvalue problem are the spherical harmonics,

f(θ, φ) = (−1)mclmP
m
l (cos θ) exp(imφ) ≡ Y ml (θ, φ) ,

(20)

where Pml is a Legendre function and clm is a normal-
ization constant, such that the integral of |Y ml |2 over the
unit sphere is unity. Here l and m are integers, such that
−l ≤ m ≤ l and Λ = l(l+ 1).

With this separation of variables the pressure pertur-
bation, for example, can be expressed as

p′(r, θ, φ, t) =
√

4π<[p̃′(r)Y ml (θ, φ) exp(−iωt)] . (21)

Also, it follows from the equations of motion that the
displacement vector can be written as

δδδr =
√

4π<
{[
ξ̃r(r)Y

m
l (θ, φ)ar (22)

+
ξ̃h(r)

L

(
∂Y ml
∂θ

aθ +
1

sin θ

∂Y ml
∂φ

aφ

)]
exp(−iωt)

}
,

where

ξ̃h(r) =
L

rω2

(
1

ρ
p̃′ + Φ̃′

)
, (23)

and L =
√
l(l + 1); in Eq. (22) aθ and aφ are unit vec-

tors in the θ and φ directions. With this definition ξ̃r
and ξ̃h are essentially the root-mean-square radial and
horizontal displacements.

In investigations of the properties of the oscillations it
is often convenient to approximate locally their spatial
behavior by a plane wave, exp(ik · r), where the local
wavenumber k can be separated into radial and tangen-
tial components as k = krar + kh. From Eq. (19) it then
follows that

k2
h '

l(l+ 1)

r2
, (24)

where kh = |kh|. Thus, for example, the horizontal sur-
face wavelength of the mode is given by

λh =
2π

kh
' 2πR√

l(l + 1)
; (25)

in other words, l is approximately the number of wave-
lengths around the stellar circumference. This identifi-
cation is very useful in the asymptotic analysis of the
oscillations. Also, it follows from, e.g., Eq. (21) that m
measures the number of nodes around the equator.

FIG. 2. Examples of spherical harmonics, labelled by the de-
gree l and azimuthal order m. For clarity the polar axis has
been inclined 30◦ relative to the plane of the page.

A few examples of spherical harmonics are shown in
Fig. 2. It should be noticed that with increasing degree
the sectoral modes, with m = ±l, become increasingly
confined near the equator.

Given the separation of variables, the equations of adi-
abatic stellar pulsation are reduced to ordinary differen-
tial equations for the amplitude functions; writing the
equations in terms of the variables {ξr, p′, Φ′, dΦ′/dr}
(where I have dropped the tildes) it is straightforward to
obtain

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′

+
l(l+ 1)

ω2r2
Φ′ , (26)

dp′

dr
= ρ(ω2 −N2)ξr +

1

Γ1p

dp

dr
p′ − ρdΦ′

dr
, (27)

and

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2

)
+
l(l+ 1)

r2
Φ′ .

(28)

11



Here

c2 =
Γ1p

ρ
(29)

is the squared adiabatic sound speed, and I have intro-
duced the characteristic frequencies Sl and N (the so-
called Lamb and buoyancy frequencies), defined by

S2
l =

l(l+ 1)c2

r2
' k2

hc
2 , (30)

and

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
. (31)

The equations must be combined with boundary condi-
tions: two of these ensure regularity at the center, r = 0,
which is a regular singular point of the equations. One
condition enforces continuity of Φ′ and its gradient at
the surface, r = R. Finally, the surface pressure pertur-
bation must satisfy a dynamical condition. In its most
simple form it imposes zero pressure perturbation on the
perturbed surface, i.e.,

δp = 0 at r = R . (32)

The fourth-order system of differential equations, Eqs
(26) – (28), and the boundary conditions define an eigen-
value problem which has solutions only for selected dis-
crete values of ω. Thus for each (l, m) we obtain a set of
eigenfrequencies ωnlm, distinguished by their radial order
n.

It should be noticed that in the present case of a spher-
ically symmetric star the frequencies are degenerate in
azimuthal order: the definition of m is tied to the orien-
tation of the coordinate system which, for a spherically
symmetric star, can have no physical significance. In-
deed, the equations and boundary conditions do not de-
pend on m. Thus, in analyzing the effects of the spher-
ically symmetric structure of the Sun, the frequencies
are characterized solely by l and n; the relation between
structure and these multiplet frequencies ωnl is discussed
in Sections V.B – V.D. As discussed in Section V.E, the
degeneracy in m is lifted by rotation.

B. Properties of oscillations

From the point of view of helio- and asteroseismic
investigations, it is important to realize which aspects
of stellar structure are accessible to study, in the sense
of having a direct effect on the oscillation frequencies.
Within the adiabatic approximation it follows from Eqs
(26) – (28) that the frequencies are completely deter-
mined by specifying p, ρ, g and Γ1 as functions of the
distance r to the center. However, assuming that the

equations of stellar structure are satisfied, p, g and ρ
are related by Eqs (2a), (2b) and (9). Thus specifying
just ρ(r) and Γ1(r), say, completely determines the adi-
abatic oscillation frequencies. Conversely, the observed
frequencies only provide direct information about these
‘mechanical’ quantities. To constrain other properties of
the stellar interior, additional information has to be in-
cluded, such as the equation of state or Eqs (2c) and
(2d) determining the temperature gradient and luminos-
ity (e.g., Gough and Kosovichev, 1990). It is evident that
the inferences obtained in such investigations may suffer
from uncertainties in, for example, the assumed physics.

The observed solar oscillations are in most cases pre-
dominantly of acoustic nature, and hence there frequen-
cies are most sensitive to sound speed. To interpret he-
lioseismic inferences of sound speed in terms of quantities
more directly related to the properties of solar models, it
is instructive to note that equation of state of stellar inte-
riors is reasonably well approximated by that of a perfect,
fully ionized gas, according to which p = kBρT/(µmu);
here kB is Boltzman’s constant, mu is the atomic mass
unit, and µ is the so-called mean molecular weight, re-
lated to the abundances X and Z of hydrogen and heavy
elements by µ ' 4/(3 + 5X −Z). In this approximation,
also, Γ1 = 5/3. Thus

c2 ' Γ1kBT

µmu
, (33)

i.e., the sound speed is essentially determined by T/µ.
To obtain separate estimates of T and µ, additional con-
straints on the model are required.

The near-surface layers of the Sun present special prob-
lems which have so far not been resolved. Modelling of
the structure of these layers is complicated by the pres-
ence of convective motions with Mach numbers approach-
ing 0.5, in the uppermost few hundred km of the con-
vection zone. Results of detailed three-dimensional and
time-dependent hydrodynamical simulations have been
incorporated in a solar model used to compute oscillation
frequencies, resulting in some improvement in the agree-
ment with the observed frequencies (Rosenthal et al.,
1999);9 however, in general simple prescriptions, which
are certainly inadequate, are used for the treatment of
convection in this region. The adiabatic approximation
used in most computations of solar oscillation frequen-
cies is not valid near the surface. Even in the cases
where nonadiabatic calculations have been carried out
(e.g., Guzik and Cox, 1991; Guenther, 1994), these suffer
from neglect, or inadequate treatment, of the perturba-

9Similar results were obtained by Li et al. (2002) using an
extension of mixing-length theory calibrated against numeri-
cal simulations.
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tions to the convective flux; furthermore, the perturba-
tion to the turbulent pressure is usually ignored. These
potential problems with the models must be kept in mind
when the observed and computed frequencies are com-
pared. However, it is important to note that they are
in all cases confined to a very thin region near the solar
surface.

FIG. 3. Cyclic frequencies ν = ω/2π, as functions of degree
l, computed for a normal solar model. Selected values of the
radial order n have been indicated.

Figure 3 illustrates adiabatic oscillation frequencies
computed for a solar model. For clarity modes of given
radial order n have been connected. With a few un-
confirmed exceptions (see Section VI.B.3) the observed
solar oscillations have frequencies in excess of 500 µHz
(e.g., Schou, 1998a; Bertello et al., 2000; Finsterle and
Fröhlich, 2001; Garćıa et al., 2001), and hence correspond
to the modes labelled ‘p modes’ and, at relatively high
degree ‘f modes’. As discussed in more detail in the fol-
lowing section, the former are standing acoustic waves,
whereas the latter behave essentially as surface gravity
waves. The modes labelled ‘g modes’ are internal gravity
waves. As indicated, it is conventional to assign positive
and negative radial orders n to p and g modes, respec-
tively, with n = 0 for f modes. With this definition, fre-
quency is an increasing function of n for given l; also, in
most cases |n| corresponds to the number of radial nodes
in the radial component of the displacement, excluding a

possible node at the center.
In Figure 3 it appears that the f-mode curve crosses

the g-mode curves; in fact, if l is regarded as a contin-
uous variable,10 it is found that the interaction takes
place through avoided crossings where the frequencies
approach very closely without actually crossing (e.g.
Christensen-Dalsgaard 1980). This type of behavior is
commonly seen for stellar oscillation frequencies, as a
parameter characterizing the solution is varied (e.g. Os-
aki 1975). It is also well-known in, for example, atomic
physics; an early and very clear discussion of the behav-
ior of eigenvalues in the vicinity of an avoided crossing
was given by von Neuman & Wigner (1929).

C. Asymptotic behavior of stellar oscillations

Although it is relatively straightforward to solve the
equations of adiabatic stellar oscillation, approximate
techniques play a major role in the interpretation of ob-
servations of solar and stellar oscillations. They provide
insight into the relation between the observations and the
properties of the stellar interiors, which can inspire more
precise analyses. Also, since the observed solar modes are
in many cases of high order, asymptotic expressions are
sufficiently precise to provide useful quantitative results.

1. Properties of acoustic modes

Most of the modes observed in the Sun are essentially
acoustic modes, often of relatively high radial order. In
this case an asymptotic description can be obtained very
simply, by approximating the modes locally by plane
sound waves, satisfying the dispersion relation

ω2 = c2|k|2 ,

where k = krar+kh is the wave vector. Thus the proper-
ties of the modes are entirely controlled by the variation
of the adiabatic sound speed c(r). To describe the radial
variation of the mode, we use Eq. (24) to obtain

k2
r =

ω2

c2
− L2

r2
=
ω2

c2

(
1− S2

l

ω2

)
. (34)

This equation can be interpreted very simply in geomet-
rical terms through the behavior of rays of sound, as
illustrated in Fig. 4. With increasing depth beneath the
surface of a star temperature, and hence sound speed,
increases. As a result, waves that are not propagating
vertically are refracted, as indicated in Eq. (34) by the

10This is clearly mathematically permissible, although only
the integral values of l have a physical meaning.
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decrease in kr with increasing c; the horizontal compo-
nent |kh| of the wave vector, in contrast, increases with
decreasing r. Thus the rays bend, as shown in Fig. 4.
The waves travel horizontally at the lower turning point,
r = rt, where ω = Sl and hence kr = 0, i.e.,

c(rt)

rt
=
ω

L
. (35)

For r < rt, kr is imaginary and the wave decays expo-
nentially.

FIG. 4. Propagation of rays of sound in a cross-section of
the solar interior. The ray paths are bent by the increase in
sound speed with depth until they reach the inner turning
point (indicated by the dotted circles) where they undergo
total internal refraction. At the surface the waves are reflected
by the rapid decrease in density.

The normal modes observed as global oscillations on
the stellar surface arise through interference between
waves propagating in this manner. In particular, they
share with the waves the total internal reflection at
r = rt. It follows from Eq. (35) that the lower turning
point is located the closer to the center, the lower is the
degree or the higher is the frequency. Radial modes, with
l = 0, penetrate the center, whereas the modes of highest
degree observed in the Sun, with l >∼ 1000, are trapped in
the outer small fraction of a per cent of the solar radius.
Thus the oscillation frequencies of different modes reflect
very different parts of the Sun; it is largely this variation
in sensitivity which allows the detailed inversion for the
properties of the solar interior as a function of position
(see also Sections VII and VIII).

Equation (34) can be used to justify an approximate,
but extremely useful, expression for the frequencies of
acoustic oscillation. The requirement of a standing wave
in the radial direction implies that the integral of kr over
the region of propagation, between r = rt and R, must
be an integral multiple of π, apart from possible effects
of phase changes at the end-points of the interval:

(n+ α)π '
∫ R

rt

krdr '
∫ R

rt

ω

c

(
1− S2

l

ω2

)1/2

dr , (36)

where α contains the phase changes at the points of re-
flection. This may also be written as

π(n + α)

ω
' F

(ω
L

)
, (37)

where

F (w) =

∫ R

rt

(
1− c2

w2r2

)1/2
dr

c
. (38)

That the observed frequencies of solar oscillation satisfy
the simple functional relation given by Eq. (37) was first
found by Duvall (1982); this relation is therefore com-
monly known as the Duvall law.

2. A proper asymptotic treatment

Although instructive, this derivation is hardly satis-
factory, in either a mathematical or physical sense. It
ignores the fact that the oscillations are not purely acous-
tic of nature, and neglects effects of variations of stellar
structure with position. Also, effects near the stellar sur-
face leading to reflection of the waves are simply postu-
lated.

A more satisfactory description can be based on
asymptotic analyses of the oscillation equations, Eqs (26)
– (28). The modes observed in the Sun are either of high
radial order or high degree. In such cases it is often
possible, in approximate analyses, to make the so-called
Cowling approximation, where the perturbation Φ′ to
the gravitational potential is neglected (Cowling, 1941).
This can be justified, at least partly,11 by noting that
for modes of high order or high degree, and hence vary-
ing rapidly as a function of position, the contributions
from regions where ρ′ have opposite sign largely cancel
in Φ′. In this approximation, the order of the equations
is reduced to two, making them amenable to standard
asymptotic techniques (e.g., Ledoux, 1962; Vandakurov,
1967; Smeyers, 1968). A convenient formulation has been
derived by Gough (see Deubner and Gough, 1984; Gough,
1993): in terms of the quantity

Ψ = c2ρ1/2div δδδr , (39)

the oscillation equations can be approximated by

d2Ψ

dr2
= −K(r)Ψ , (40)

where

K(r) =
ω2

c2

[
1− ω2

c

ω2
− S2

l

ω2

(
1− N2

ω2

)]
. (41)

11The validity of this argument under all circumstances is
not entirely obvious, however; see Christensen-Dalsgaard and
Gough (2001).
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Here N2 and S2
l were defined in Eqs (30) and (31), and

the acoustical cut-off frequency ωc is given by

ω2
c =

c2

4H2

(
1− 2

dH

dr

)
, (42)

where H = −(d ln ρ/dr)−1 is the density scale height.
In addition to the modes determined by Eq. (40), there

are modes for which div δδδr ' 0; these modes clearly can-
not be analyzed in terms of Ψ. They approximately cor-
respond to surface gravity waves, with frequencies satis-
fying

ω2 ' gkh , (43)

and are usually known as f modes. I return to them in
Section V.C.4.

FIG. 5. Characteristic frequencies N/2π (solid line), ωc/2π
(dotted line) and Sl/2π (dashed lines, labelled by l) for l = 1,
10, 50, 100 and 500. The frequencies have been computed for
Model S of Christensen-Dalsgaard et al. (1996). The heavy
horizontal lines mark the trapping regions of a g mode of
frequency 100µHz and a p mode of frequency 3000µHz and
degree l = 10.

The physical meaning of Eq. (40) becomes clear if we
make the identification K = k2

r where, as before, kr is
the radial component of the local wave number. Accord-
ingly, a mode oscillates as a function of r in regions where
K > 0; such regions are referred to as regions of propa-
gation. The mode is evanescent, decreasing or increasing
exponentially, where K < 0. The detailed behavior of
the mode is thus controlled by the value of the frequency,
relative to the characteristic frequencies Sl, N and ωc.

Figure 5 illustrates the characteristic frequencies in a
model of the present Sun. It is evident that ωc is large
only near the stellar surface, where the density scale
height is small. In the range of observed solar oscillations
the frequencies are higher than the buoyancy frequency;

thus, roughly speaking, modes have an oscillatory behav-
ior where ω > Sl and ω > ωc. Another type of propaga-
tion occurs at low frequency, in a region where ω < N .
Examples of propagation regions corresponding to these
two cases are marked in Fig. 5. Modes corresponding to
the former case are called p modes; it follows from the
analysis given above that they are essentially standing
sound waves, where the dominant restoring force is pres-
sure. Modes corresponding to the latter cases are called
g modes; here the dominant restoring force is buoyancy,
and the modes have the character of standing internal
gravity waves.

Equations (40) and (41) are in a form well suited for
JWKB analysis.12 The result is that the modes satisfy

ω

∫ r2

r1

[
1− ω2

c

ω2
− S2

l

ω2

(
1− N2

ω2

)]1/2
dr

c
' π(n − 1/2) ,

(44)

where r1 and r2 are adjacent zeros of K such that K > 0
between them.

3. Asymptotic properties of p modes

For the p modes, we may approximately neglect the
term in N and, except near the surface, the term in
ωc. Thus we recover Eq. (34); in particular, the loca-
tion of the lower turning point is approximately given by
Eq. (35). Near the surface, on the other hand, Sl � ω for
small or moderate l and may be neglected (cf. Fig. 5);
thus the location r = Rt of the upper turning point is
determined by ω ' ωc. Physically, this corresponds to
the reflection of the waves where the wavelength becomes
comparable to the local density scale height. It should
also be noticed from Fig. 5 that ωc approximately tends
to a constant in the stellar atmosphere. Modes with fre-
quencies exceeding the atmospheric value of ωc are only
partially trapped, losing energy in the form of running
waves in the solar atmosphere; hence they may be ex-
pected to be rather strongly damped.

If we assume that |N2/ω2| � 1, Eq. (44) simplifies to

ω

∫ r2

r1

(
1− ω2

c

ω2
− S2

l

ω2

)1/2
dr

c
' π(n − 1/2) , (45)

where, as discussed above, r1 ' rt and r2 ' Rt. Further
simplification results by noting that since ωc/ω � 1, ex-
cept near the upper turning point, the integral may be
expanded, yielding

12For Jeffreys, Wentzel, Kramers and Brillouin, who were
amongst the first to use such techniques. Applications to
quantum mechanics, were discussed, for example, by Schiff
(1949).
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ω

∫ R

rt

(
1− S2

l

ω2

)1/2
dr

c
' π[n+ α(ω)] (46)

(e.g., Christensen-Dalsgaard and Pérez Hernández,
1992). Here we again assumed that Sl � ω near the
upper turning point; consequently α depends only on
frequency and results from the expansion of the near-
surface behavior of ωc. Thus we recover Eqs (37) and
(38), previously obtained from a simple analysis of sound
waves. From a physical point of view, the assumption on
Sl ensures that the waves travel nearly vertically near
the surface; thus their behavior is independent of their
horizontal structure, leading to a phase shift depending
solely on frequency.

For low-degree modes these relations may be simplified
even further, by noting that in the integrand in Eq. (38)
(. . .)1/2 differs from unity only close to the lower turning
point which, for these modes, is situated very close to the
center. As a result it is possible to expand the integral to

obtain, to lowest order, that F (w) '
∫ R

0
dr/c−w−1π/2.

Furthermore, a more careful analysis shows that for low-
degree modes L should be replaced by13 l + 1/2 (e.g.,
Vandakurov, 1967; Tassoul, 1980). Thus from Eq. (37)
we obtain

νnl ≡
ωnl
2π
'
(
n+

l

2
+

1

4
+ α

)
∆ν , (47)

where ∆ν = [2
∫R
0

dr/c]−1 is the inverse of twice the
sound travel time between the center and the surface.
This equation predicts a uniform spacing ∆ν in n of
the frequencies of low-degree modes. Also, modes with
the same value of n + l/2 should be almost degenerate,
νnl ' νn−1 l+2 . This frequency pattern was first observed
for the solar five-minute modes of low degree by Claverie
et al. (1979) and may be used in the search for stellar
oscillations of solar type.

The deviations from the simple relation (47) have con-
siderable diagnostic potential. By extending the expan-
sion of Eq. (38), leading to Eq. (47), to take into account
the variation of c in the core one finds (Gough, 1986; see
also Tassoul, 1980)

dnl ≡ νnl − νn−1 l+2 ' −(4l+ 6)
∆ν

4π2νnl

∫ R

0

dc

dr

dr

r
;

(48)

here the integral is predominantly weighted towards the
center of the star, as a result of the factor r−1 in the in-
tegrand. This behavior provides an important diagnostic

13Note that, in any case, except at the lowest degrees this is
an excellent approximation to the original definition of L; thus
in the asymptotic discussions I shall use the two definitions
interchangeably.

of the structure of stellar cores. In particular, we note
that, according to Eq. (33), the core sound speed is re-
duced as µ increases with the conversion of hydrogen to
helium as the star ages. As a result, dnl is reduced, thus
providing a measure of the evolutionary state of the star
(e.g., Christensen-Dalsgaard, 1984, 1988; Ulrich, 1986;
Gough and Novotny, 1990; see also Gough, 2001a).

It is interesting to investigate the effects on the fre-
quencies of small changes to the model. Such frequency
changes may be estimated quite simply by linearizing the
Duvall law in differences δωnl in ωnl, δrc(r) in c(r) and
δα(ω) in α(ω). The result can be written (Christensen-
Dalsgaard et al., 1988)

Snl
δωnl
ωnl

' H1

(ωnl
L

)
+H2(ωnl) , (49)

where

Snl =

∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2
dr

c
− π dα

dω
, (50)

H1(w) =

∫ R

rt

(
1− c2

r2w2

)−1/2
δrc

c

dr

c
, (51)

and

H2(ω) =
π

ω
δα(ω) . (52)

Christensen-Dalsgaard, Gough, and Thompson (1989)
noted that H1(ω/L) and H2(ω) can be obtained sepa-
rately, to within a constant, by means of a double-spline
fit of the expression (49) to p-mode frequency differ-
ences. The dependence of H1 on ω/L is determined by
the sound-speed difference throughout the star; in fact,
it is straightforward to verify that the contribution from
H1 is essentially just an average of δrc/c, weighted by the
sound-travel time along the rays characterizing the mode.
The contribution from H2(ω) depends on differences in
the upper layers of the models. Thus, in particular, it
contains the effects of the near-surface errors discussed
in Section V.B.

The preceding, relatively simple, asymptotic analysis
has been improved in several investigations. For modes
of high degree the expansion leading to a frequency-
dependent phase function α(ω) in Eq. (46) is no longer
valid; Brodsky and Vorontsov (1993) showed how the
analysis could be generalized to obtain the l-dependence
of α. For modes of low degree or relatively low fre-
quency the perturbation to the gravitational potential
can no longer be ignored, and it may furthermore be
necessary to include the effect of the buoyancy frequency
in the asymptotic dispersion relation (e.g., Vorontsov,
1989, 1991; Gough, 1993). Finally, the usual asymptotic
expansion, as used for example to obtain Eq. (48), is
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somewhat questionable in the core of the star where con-
ditions vary on a scale comparable with the wavelengths
of the modes; here other formulations may be more ap-
propriate (e.g., Roxburgh and Vorontsov, 1994a, 2000ab,
2001). However, for the present review the simpler ex-
pressions are generally adequate.

4. f and g modes

In addition to p modes, the observations of solar os-
cillations also show f modes of moderate and high de-
gree. As discussed above, these modes are approximately
divergence-free, with frequencies given by (cf. Eq. 43)

ω2 ' gskh =
GM

R3
L , (53)

where gs is the surface gravity. It may be shown that the
displacement eigenfunction is approximately exponential,
ξr ∝ exp(khr), as is the case for surface gravity waves in
deep water. According to Eq. (53) the frequencies of
these modes are independent of the internal structure of
the star; this allows the modes to be uniquely identi-
fied in the observed spectra, regardless of possible model
uncertainties. A more careful analysis must take into ac-
count the fact that gravity varies through the region over
which the mode has substantial amplitude; this results
in a weak dependence of the frequencies on the density
structure (Gough, 1993).

I finally briefly consider the properties of g modes. It
follows from Fig. 5 that these are trapped in the radia-
tive interior and behave exponentially in the convection
zone. In fact, they have their largest amplitude close
to the solar center and hence are potentially very inter-
esting as probes of conditions in the deep solar interior.
High-degree g modes are very effectively trapped by the
exponential decay in the convection zone and are there-
fore unlikely to be visible at the surface. However, for
low-degree modes the trapping is relatively inefficient,
and hence the modes might be expected to be observ-
able, if they were excited to reasonable amplitudes. The
behavior of the oscillation frequencies can be obtained
from Eq. (44). In the limit where ω � N in much of
the radiative interior this shows that the modes are uni-
formly spaced in oscillation period, with a period spacing
that depends on degree.

D. Variational principle

The formulation of the oscillation equations given in
Eq. (18) is the starting point for powerful analyses of
general properties of stellar pulsations. For convenience,
we write the equation as

ω2δδδr = F(δδδr) , (54)

where the right-hand side is the linearized force per unit
mass, which, as discussed in Section V.A.2, can be re-
garded as a linear operator on δδδr.

The central result is that Eq. (54), applied to adiabatic
oscillations, defines a variational principle. Specifically,
by multiplying the equation by ρδδδr∗ (‘∗’ denoting the
complex conjugate) and integrating over the volume V
of the star, we obtain

ω2 =

∫
V
δδδr∗ · F(δδδr)ρdV∫
V
|δδδr|2ρdV . (55)

We now consider adiabatic oscillations which satisfy the
surface boundary condition given by Eq. (32). In this
case it may be shown that the right-hand side of Eq. (55)
is stationary with respect to small perturbations to the
eigenfunction δδδr (e.g., Chandrasekhar, 1964).

A very important application of this principle concerns
the effect on the frequencies of perturbations to the equi-
librium model or other aspects of the physics of the oscil-
lations. Such perturbations can in general be expressed
as a perturbation δF to the force in Eq. (54). It follows
from the variational principle that their effect on the fre-
quencies can be determined as

δω2 =

∫
V δδδr

∗ · δF(δδδr)ρdV∫
V
|δδδr|2ρdV , (56)

evaluated using the eigenfunction δδδr of the unperturbed
force operator. Applications of this expression to rather
general situations were considered by Lynden-Bell and
Ostriker (1967).

Equation (56) provides the basis for determining the
relation between differences in structure and differences
in frequencies between the Sun and solar models. As
discussed in Section V.B, the oscillation frequencies are
determined by a suitable pair of model variables, e.g.,
the pair (c2, ρ), which reflects the acoustic nature of the
observed modes. The differences between the structure
of the Sun and a model can then be characterized by
the differences δrc

2/c2 = [c2�(r) − c2mod(r)]/c2(r) and
δrρ/ρ = [ρ�(r) − ρmod(r)]/ρ(r). In particular, the per-
turbation δF can be expressed in terms of δrc

2/c2 and
δrρ/ρ, through appropriate use of the linearized versions
of Eqs (2a) and (2b) (e.g., Gough and Thompson, 1991),
resulting in a linear relation for the frequency change in
terms of the structure differences.

The analysis in terms of δrc
2/c2 and δrρ/ρ only cap-

tures the differences between the Sun and the model to
the extent that they relate to the hydrostatic structure
of the Sun. As discussed in Section V.B, inadequacies in
the treatment of the physics of the modes, such as non-
adiabatic effects, contribute in the near-surface layers of
the Sun. These can also be represented as perturbations
δFsurf , such that δFsurf(δδδr) is significant only in the su-
perficial layers. For modes of low or moderate degree the
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eigenfunctions depend little on degree in this region, as
discussed in Section V.C.3. Assuming that δFsurf does
not depend explicitly on l, it follows that for these modes∫
V
δδδr∗ · δFsurf(δδδr)ρdV depends little on l; hence, accord-

ing to Eq. (56), the effects of the near-surface problems
may in general be expected to be of the form

(
δωnl
ωnl

)

surf

' I−1
nl Fsurf(ωnl) , (57)

where Inl =
∫
V
|δδδr|2ρdV , the denominator in Eq. (56),

is known as the mode inertia and, as indicated, Fsurf de-
pends only on frequency. We note also that at relatively
low frequency the relevant superficial layers are outside
the upper turning point determined by ω = ωc (cf.
Fig. 5) and hence the modes are evanescent in this region.
Thus we expect the effects of the near-surface problems
to be small for low-frequency modes (e.g., Christensen-
Dalsgaard and Thompson, 1997).

The mode inertia still depends on both degree and fre-
quency: in particular, modes of high degree and/or low
frequency are trapped closer to the the solar surface (cf.
Eq. 35), involve a smaller fraction of the Sun’s mass and
hence have a smaller Inl. Thus high-degree modes are af-
fected more strongly by the near-surface errors than are
low-degree modes at the same frequency. To eliminate
this essentially trivial effect, it is instructive to consider
frequency differences scaled by Inl. This may be done
conveniently by scaling the frequencies by

Qnl ≡
Inl

Ī0(ωnl)
, (58)

where Ī0(ωnl) is the inertia of a hypothetical radial mode
(with l = 0) with frequency ωnl, obtained by interpola-
tion to that frequency in the inertias for the actual radial
modes. This effectively reduces the frequency shift to the
effect on a radial mode of the same frequency. Examples
of scaled frequency differences will be shown later.

From the preceding analysis it finally follows that the
frequency differences between the Sun and the model,
assuming that the differences are so small that a linear
representation is adequate, can be written as

δωnl
ωnl

=

∫ R

0

[
Knl
c2,ρ(r)

δrc
2

c2
(r) + Knl

ρ,c2(r)
δrρ

ρ
(r)

]
dr

+I−1
nl Fsurf(ωnl) , (59)

where the kernels Knl
c2,ρ and Knl

ρ,c2 , which result from
manipulating δF , are computed from the eigenfunctions
of the reference model (e.g., Dziembowski et al., 1990;
Däppen et al., 1991; Gough & Thompson, 1991). This
relation forms the basis for inversions of the oscillation
frequencies to determine solar structure (see Section VII).

The similarity of Eq. (59) to the asymptotic expres-
sions in Eqs (50) – (52) should be noted. In both cases

the frequency differences are separated into contributions
from the bulk of the Sun (in the asymptotic case char-
acterized solely by the sound-speed difference) and from
the near-surface layers, the latter depending essentially
only on frequency after appropriate scaling; indeed, it
may be shown that Snl and Inl are closely related.

E. Effects of rotation

So far, we have considered only oscillations of a spher-
ically symmetric star; in this case, the frequencies are
independent of the azimuthal order m. Departures from
spherical symmetry lift this degeneracy, causing a fre-
quency splitting according to m.

The most obvious, and most important, such departure
is rotation; early studies of the effect of rotation were pre-
sented by Cowling and Newing (1949) and Ledoux (1949,
1951). A simple description can be obtained by first not-
ing that, according to Eqs (20) and (22), the oscillations
depend on longitude φ and time t as cos(mφ−ωt), i.e., as
a wave running around the equator. We now consider a
star rotating with angular velocity Ω and a mode of oscil-
lation with frequency ω0 in a frame rotating with the star;
the coordinate system is chosen with polar axis along
the axis of rotation. Letting φ′ denote longitude in this
frame, the oscillation therefore behaves as cos(mφ′−ω0t).
The longitude φ in an inertial frame is related to φ′ by
φ′ = φ − Ωt; consequently, the oscillation as observed
from the inertial frame depends on φ and t as

cos(mφ −mΩt − ω0t) ≡ cos(mφ− ωmt) ,

where ωm = ω0 + mΩ. Thus the frequencies are split
according to m, the separation between adjacent values
of m being simply the angular velocity; this is obviously
just the result of the advection of the wave pattern with
rotation.

This simple description contains the dominant phys-
ical effect, i.e., advection, of rotation on the observed
modes of oscillation, but it suffers from two problems: it
assumes solid-body rotation, whereas the Sun rotates dif-
ferentially; and it neglects the effects, such as the Coriolis
force, in the rotating frame. In a complete description in
an inertial frame, including terms linear in the angular
velocity,14 Eq. (18) must be replaced by

ω2δδδr =
1

ρ
∇∇∇p′ − g′ − ρ′

ρ
g + 2mωΩδδδr− 2iωΩΩΩ× δδδr , (60)

14In the solar case the centrifugal force and other effects
of second or higher order in Ω, including the distortion
of the equilibrium structure, can be neglected to a good
approximation.
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where ΩΩΩ is the rotation vector, of magnitude Ω and
aligned with the rotation axis. The first term resulting
from rotation is the contribution from advection, as dis-
cussed above, whereas the last term is the Coriolis force.

The terms arising from rotation obviously correspond
to a perturbation to the force operator F in Eq. (54);
from Eq. (56) the effect on the oscillation frequencies can
be obtained on the form

ωnlm = ωnl0 +m

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ , (61)

where the kernels Knlm can be calculated from the eigen-
functions for the non-rotating model. The kernels depend
only on m2, so that the rotational splitting ωnlm−ωnl0 is
an odd function of m. Also, the kernels are symmetrical
around the equator; as a result, the rotational splitting
is only sensitive to the component of Ω which is similarly
symmetrical.

FIG. 6. Contour plots of rotational kernels Knlm in a solar
quadrant. The modes all have frequencies near 2 mHz; the
following pairs of (l,m) are included: a) (5, 2); b) (20, 8); c)
(20, 17); and d) (20, 20).

The general expression for the rotational kernels is
quite complicated and will not be given here (see, for ex-
ample, Hansen et al., 1977; Cuypers, 1980; Gough, 1981).
Examples of kernels are shown in Fig. 6. The extent in
the radial direction is essentially determined by the loca-
tion of the lower turning point, r = rt (cf. Eq. 35). The
latitudinal extent is determined by the properties of the
Legendre functions Pml ; it follows from their asymptotic
behavior that the kernels are confined between latitudes
± cos−1(|m|/L). Thus, as also reflected in the behavior
of the spherical harmonics (Fig. 2) modes with low |m|
extend over essentially all latitudes, whereas modes with
m ' ±l are confined close to the equator.

If Ω = Ω(r) is assumed to be a function of r alone,
the corresponding kernels do not depend on m, so that
Eq. (61) predicts a uniform frequency splitting inm. This
is often written on the form

δωnlm ≡ ωnlm − ωnl0 = mβnl

∫ R

0

Knl(r)Ω(r)dr , (62)

where Knl is unimodular, i.e.,
∫
Knl(r)dr = 1.

For stars rotating substantially more rapidly than the
Sun terms of higher order in Ω must be taken into ac-
count. Terms quadratic in Ω, such as the centrifugal
distortion, give rise to frequency perturbations that are

even functions of m, also changing the mean frequency of
the multiplet (e.g., Gough and Thompson, 1990), while
cubic terms may be important in cases of modes closely
spaced in frequency, such as result from the asymptotic
behavior of low-degree p modes (cf. Section V.C.3). A
detailed discussion of these effects was given by Soufi,
Goupil & Dziembowski (1998); they can give rise to com-
plex oscillation spectra, considerably complicating mode
identification for rapidly rotating stars.

F. The causes of solar oscillations

Given the assumption of adiabatic oscillations, no in-
formation is obtained about the possible damping or driv-
ing of the modes: the equations are conservative and do
not involve any energy exchange between the oscillations
and the flow of energy in the equilibrium model. Calcu-
lations taking into account nonadiabatic effects have in-
vestigated the linear stability of stellar oscillations; this
is determined by the imaginary part ωi of the complex
frequency ω, modes with positive ωi being unstable. It
is found that many types of stars, for example the classi-
cal Cepheids, have unstable modes; the instability results
from favourable phase relations between the compression
and the perturbation to the heat flux in the oscillations,
often caused by suitable variations in the opacity.

Early nonadiabatic calculations of solar oscillations
(e.g., Ando and Osaki, 1975) found that modes in the ob-
served range of frequencies were in fact unstable. These
calculations, however, used a simplified treatment of ra-
diative transfer in the outer layers of the Sun and, more
importantly, neglected effects of convection. Balmforth
(1992a) carried out nonadiabatic calculations of solar
oscillations, including convective effects; these were de-
scribed by expressions, based on mixing-length theory,
for the perturbations induced by stellar pulsation to the
convective flux and turbulent stresses, developed from an
original formulation of Gough (1977a). He found that all
the modes were damped, an important contribution to
the damping coming from the perturbation to the turbu-
lent pressure.15

This motivates a search for driving mechanisms exter-
nal to the oscillations, the most natural source being the
vigorous convection near the solar surface, where mo-
tion at near-sonic speed may be expected to be a strong
source of acoustic waves (Lighthill, 1952). Stein (1967)
applied this to the interpretation of the solar five-minute
oscillations. An early estimate of the expected amplitude

15It should be noted, however, that Xiong et al. (2000) found
some solar modes to be unstable, using a different formulation
for the convective effects.
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of global modes excited by this mechanism was made by
Goldreich and Keeley (1977).

Since each mode feels the effect of a very large num-
ber of turbulent eddies, acting at random, the combined
effect is that of a stochastic forcing of the mode. To illus-
trate the properties of the resulting oscillations I consider
a very simple model of this process (Batchelor, 1956;
see also Christensen-Dalsgaard, Gough, and Libbrecht,
1989), consisting of a simple damped oscillator of ampli-
tude A(t), forced by a random function f(t), and hence
satisfying the equation

d2A

dt2
+ 2η

dA

dt
+ ω2

0A = f(t) ; (63)

here η is the linear damping rate, η = −ωi. This equation
is most easily dealt with in terms of its Fourier trans-
form. Introducing the Fourier transforms Ã(ω) and f̃(ω)
by Ã(ω) =

∫
A(t)eiωtdt, f̃(ω) =

∫
f(t)eiωtdt, we obtain

from Eq. (63)

−ω2Ã− 2iηωÃ + ω2
0Ã = f̃ . (64)

This yields the power spectrum of the oscillator as

P (ω) = |Ã(ω)|2 =
|f̃(ω)|2

(ω2
0 − ω2)2 + 4η2ω2

. (65)

Near the peak in the spectrum, where |ω−ω0| � ω0 the
average power of the oscillation is therefore given by

〈P (ω)〉 ' 1

4ω2
0

Pf (ω)

(ω − ω0)2 + η2
, (66)

where Pf(ω) = 〈|f̃(ω)|2〉 is the average power of the forc-
ing function.

Since Pf(ω) is often a slowly varying function of fre-
quency, the frequency dependence of 〈P (ω)〉 is dominated
by the denominator in Eq. (66). The resulting profile is
therefore approximately Lorentzian, with a width deter-
mined by the linear damping rate η. Consequently, under
the assumption of stochastic excitation one can make a
meaningful comparison between computed damping rates
and observed line widths.

It should be noted that this model makes definite pre-
dictions about the oscillation amplitudes, from the power
available in the forcing function. This depends on the de-
tails of the interaction between convection and the oscil-
lations, with contributions both from Reynolds stresses
and entropy fluctuations generated by convection (e.g.,
Goldreich and Kumar, 1990; Balmforth, 1992b; Goldre-
ich et al., 1994; Samadi et al., 2001; Stein and Nordlund,
2001). The excitation varies strongly with frequency as
a result both of the structure of the eigenfunction and
the temporal spectrum of convection, hence accounting
for the frequency dependence of the mode amplitudes.
However, since the horizontal scale of convection near

the solar surface is much smaller than the horizontal
wavelength of the oscillations, the interaction is likely
to depend little on the degree l of the modes; thus, as
is indeed observed, we expect excitation of modes at all
degrees within the relevant frequency range, with am-
plitudes that depend relatively little on degree except
at high degree (e.g., Christensen-Dalsgaard and Gough,
1982; Woodard et al., 2001).

The observed line profiles show significant departures
from the Lorentzian shape, in the form of asymmetries.
These can be understood from more complete models of
the excitation, taking into account that the dominant
contributions to the forcing are spatially localized to rel-
atively thin regions beneath the solar surface (e.g., Du-
vall et al., 1993a; Gabriel, 1993, 2000; Roxburgh and
Vorontsov, 1995; Abrams and Kumar, 1996; Nigam and
Kosovichev, 1998; Rast and Bogdan, 1998; Rosenthal,
1998). The observed asymmetry can be used to constrain
the depth and other properties of the excitation (Chap-
lin and Appourchaux, 1999; Kumar and Basu, 1999;
Nigam and Kosovichev, 1999) and hence obtain infor-
mation about subsurface convection.

VI. OBSERVATION OF SOLAR OSCILLATION

Solar oscillations manifest themselves in the solar at-
mosphere in different ways: the displacement causes the
atmosphere to move, changes in the energy transport in
the outer layers of the Sun cause oscillations in the solar
energy output, while oscillations in the atmospheric tem-
perature are reflected in the properties of the solar spec-
tral lines. Each of these effects may be used to observe
the oscillations; since they all reflect the same underlying
modes they should evidently yield the same oscillation
frequencies. The choice of observing technique is then
determined by a combination of technical considerations
and noise properties, including the effects of the Earth’s
atmosphere for ground-based observations, and effects of
other variations in the solar atmosphere. A detailed re-
view of techniques for helioseismic observations and data
analysis was given by Brown (1996).

The combined oscillation velocity amplitude in the
five-minute range at any given point on the solar sur-
face, as detected by Leighton et al. (1962), is around
500 m s−1. However, this results from the random com-
bination of signals from of order 107 individual modes.
The velocity amplitude for each mode is at most around
10 cm s−1. The corresponding amplitude in relative in-
tensity perturbations is a few parts per million. Thus
extreme sensitivity is required to carry out detailed ob-
servations of the oscillations. Furthermore, the observa-
tions have to deal with other fluctuations in the solar
atmosphere, such as resulting from near-surface convec-
tion and solar activity, of far higher magnitude. That
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it is even possible to extract the small oscillation signal
is in large measure due to the high spatial and tempo-
ral coherence of the oscillations, with lifetimes extending
over several weeks to months; in contrast, other phenom-
ena in the solar atmosphere typically have low coher-
ence in space and time. Thus, by integrating over the
solar disk and analyzing data over extended periods in
time, the solar ‘noise’ is suppressed and the oscillations
can be isolated; even so, in current observations of solar
oscillations the effects of random solar fluctuations are
probably the dominant source of background noise. To
achieve the noise suppression and the required frequency
resolution the observations are typically analyzed coher-
ently over several months; furthermore, temporal gaps
in the data introduce frequency sidebands in the power
spectrum which complicate the determination of the fre-
quencies, and hence data with minimal interruptions are
highly desirable. This immediately points to the need
for the combination of data from several sites around the
Earth, to compensate for the day/night cycle, or for ob-
servations from space.

A. Observing techniques

The most detailed observations of solar oscillations
have been carried out in line-of-sight velocity, measured
from the Doppler shift of lines in the solar spectrum.
As illustrated in Fig. 7, this may be done by measuring
the intensity in two bands on either side of a suitable
spectral line. If the intensities are recorded by means
of an imaging detector, the result is a velocity image,
measuring simultaneously the motion of the solar surface
with potentially high spatial resolution. Alternatively,
by passing integrated light from the Sun through the fil-
ter to the detector, one obtains a disk-averaged velocity,
corresponding to observing the Sun as a star.

The main challenge in the observations is to provide
a stable determination of the wavelength intervals defin-
ing the two intensities. In an ingenious technique for
disk-averaged observations, the filter is replaced by a
scattering cell, where light is scattered from the Zeeman-
split components of a line in sodium or potassium vapour
placed in the field from a permanent magnet (e.g., Fos-
sat and Ricort, 1975; Brookes et al., 1976). Here the
wavelength bands are determined mainly by the strength
of the field, which is very stable, with little sensitivity
to other properties of the instrument. A variant of this
technique (e.g., Cacciani and Fofi, 1978) can be used as a
magneto-optical transmission filter for spatially resolved
observations (e.g., Rhodes et al., 1986; Tomczyk et al.,
1995).

The perhaps most extensively developed technique for
spatially resolved observation is derived from the so-
called Fourier Tachometer (e.g., Brown, 1984). Here the

line shift is obtained from four measurements in narrow
bands across a given spectral line. This allows the defi-
nition of a measure that is essentially linear in the line-
of-sight velocity, over the considerable range of velocities
encountered over the solar surface. In the actual imple-
mentations the spectral bands are defined by Michelson
interferometers. Examples of Doppler images obtained
using this technique are shown in Fig. 8.

FIG. 7. Schematic illustration of Doppler-velocity observa-
tions. In a), the line-of-sight velocity shifts the line in wave-
length by ∆λ, from the continuous to the dashed position.
This changes the intensities Ib and Ir measured in the narrow
wavelength intervals shown as hatched, as well as the ratio
(Ib − Ir)/(Ib + Ir) which provides a measure of the shift and
hence of the velocity. Panel b) illustrates the experimental
setup. The filter alternates between letting light in the Ib

and Ir bands through. If an imaging detector is used, the
resulting images in Ib and Ir can be combined into a Doppler
image.

A conceptually very simple way to study the oscilla-
tions is to observe them in broad-band intensity or irradi-
ance. In practice, fluctuations in the Earth’s atmosphere
render such observations very difficult from the ground;
however, the technique has been highly successful from
space (e.g., Woodard and Hudson, 1983; Toutain and
Fröhlich, 1992).

A very substantial number of helioseismic observing fa-
cilities have been established (see also the review by Du-
vall, 1995). To limit effects of gaps in the data, networks
of observing stations are used. The BiSON (Birmingham
Solar Oscillation Network; Chaplin et al., 1996) net-
work was established in 1981 and now consists of six sta-
tions; it carries out disk-averaged velocity observations
by means of potassium-vapour resonant-scattering cells.
Spatially resolved velocity observations are obtained with
the GONG (Global Oscillation Network Group; Harvey
et al., 1996) six-station network, based on the Fourier-
tachometer technique, which has been operational since
1995; this is funded by the US National Science Foun-
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dation, but involves a large international collaboration.
Valuable data are also being provided by the LOWL in-
strument of the High Altitude Observatory (Tomczyk
et al., 1995) on Mauna Loa, Hawaii, using a magneto-
optical filter; this has recently been extended to a two-
station network, with the addition of an instrument on
Tenerife, in the Canary Islands. Other ground-based net-
works include the IRIS (Fossat, 1991) and TON (Chou
et al., 1995) networks.

FIG. 8. Doppler images obtained with the MDI instrument
(Scherrer et al., 1995). To the left is the original image, with
a greyscale ranging from −2000 m s−1 (dark) to 2000 m s−1

(light). This is dominated by solar rotation. After remov-
ing rotation by averaging (right-hand image) the mottling as-
sociated primarily with solar oscillations becomes apparent;
here the greyscale ranges from −500 m s−1 (dark) to 500 m s−1

(light).

Space observations from a suitable orbit completely
avoid the problem of periodic interruptions of the data.
Major contributions have been made from the SOHO
spacecraft (Domingo et al., 1995), a joint project between
ESA and NASA; it was launched in 1995 and started sci-
entific observations in 1996 from an orbit close to the
first Lagrange point between the Earth and the Sun.
SOHO carries three helioseismic instruments. GOLF
(Global Oscillations at Low Frequency; Gabriel et al.,
1995, 1997) aims in particular at detecting low-frequency
modes, possibly including g modes, in disk-averaged ob-
servations. It was designed as a resonant-scattering
Doppler-velocity instrument, using sodium vapour; how-
ever technical problems have led to the observations now
being carried out in intensity variations in the blue wing
of the sodium spectral line. VIRGO (Variability of so-
lar IRradiance and Gravity Oscillations; Fröhlich et al.,
1995, 1997) measures solar irradiance, disk-integrated in-
tensities in three different wavelength regions, and inten-
sity with limited spatial resolution. An important goal of
the instrument is again the search for g modes, with the
hope that these might be more easily detectable in in-
tensity data than in velocity data. Finally, the SOI/MDI
(Solar Oscillations Investigation – Michelson Doppler

Imager; Scherrer et al., 1995; Rhodes et al., 1997) uses
a technique based on the Fourier Tachometer, the spec-
tral bands being defined by a pair of tunable Michelson
interferometers. This provides observations of Doppler
velocity over the entire solar disk with a spatial resolu-
tion of 2 arc sec, corresponding to independent velocity
measurements over a total number of about 800 000 lo-
cations, allowing detailed study of oscillations of degrees
up to about 1000.

B. Analysis of oscillation data

Regardless of the observing technique, the signal con-
tains contributions from the broad range of modes that
are excited in the Sun (cf. Section V.F). The goal of the
analysis is to extract from this signal, as a function of po-
sition on the solar disk and time, information about the
properties of the solar interior, such as the structure and
internal motions, and about the properties of the excita-
tion of the oscillations. In principle, this may be thought
of as fitting to the observations an overall model encom-
passing all the relevant features. In practice, the analysis
must be carried out in several steps, at each step taking
into account the properties of the intermediate data re-
sulting from the preceding steps.

Here I concentrate on the determination of the prop-
erties of global modes of solar oscillation, most impor-
tantly their oscillation frequencies ωnlm, and the subse-
quent analysis of the frequencies. Alternative analysis
techniques, aimed at investigating local properties of the
solar interior, are discussed in Section X.

1. Spatial analysis

The first substantial step in the analysis is to separate
as far as possible the contributions from the individual
spherical harmonics Y ml . Oscillations in broad-band or
line intensity behave essentially as spherical harmonics
as functions of θ and φ on the solar disk. For observa-
tions in Doppler velocity, the signal is the projection of
the velocity field on the line of sight. The surface velocity
field for a single mode is determined by Eqs (22) and (23)
and is characterized by the ratio ξh(R)/ξr(R). It may be
shown, however, that at the observed solar frequencies
and low or moderate degree the oscillations are predom-
inantly in the radial direction. Thus it is common in the
analyses to ignore the horizontal component of velocity.

Here I consider Doppler observations in more detail,
assuming the velocity to be purely in the radial direction.
For simplicity I furthermore take the axis of the spherical
harmonics to be in the plane of the sky, orthogonal to the
line of sight. Then the observed Doppler signal VD can
be written as
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VD(θ, φ, t) = sin θ cos φ
∑

n,l,m

AnlmclmP
m
l (cos θ) × (67)

× cos[mφ− ωnlmt− βnlm ] .

Here the factor sin θ cos φ arises from the projection of
the velocity onto the line of sight. To isolate modes cor-
responding to a given spherical harmonic, with (l, m) =
(l0, m0), say, the signal is integrated over the area A of
the solar disk, with a suitable weight Wl0m0 (θ, φ), yield-
ing

Vl0m0(t) =

∫

A

VD(θ, φ, t)Wl0m0(θ, φ)dA (68)

=
∑

n,l,m

Sl0m0lmAnlm cos[ωnlmt+ βnlm,l0m0 ] .

The response function Sl0m0lm and the combined phase
βnlm,l0m0 are obtained from integrals of the projected
spherical harmonics weighted by Wl0m0 .

The goal of this spatial analysis is obviously to isolate
a single spherical harmonic in the time string Vl0m0(t),
i.e., to have, as far as possible, that Sl0m0lm ∝ δl0lδm0m,
where δij is the Kronecker delta. From the orthogonality
of the Y ml over the unit sphere, it may be expected that
Wl0m0 ' Y m0

l0
is suitable. Indeed, had data been avail-

able over the entire solar surface, and apart from the
velocity projection factor, complete isolation of a single
spherical harmonic would have been possible. In prac-
tice, however, Vl0m0 (t) contains contributions also from
neighboring (l, m). This so-called leakage substantially
complicates the subsequent determination of the oscilla-
tion frequencies. Examples of the leakage matrix Sl0m0lm

are illustrated in Fig. 9.

FIG. 9. Leakage matrices Sl0m0lm for (l0,m0) = (10, 0) (cir-
cles) and (l0,m0) = (10, 10) (diamonds), as functions of
(l,m). The size of the symbols is proportional to Sl0m0lm.

A special case of weighting is obtained in disk-averaged
observations; in this case the signal is dominated by

modes of low degree, l <∼ 4, with no explicit separa-
tion between the azimuthal orders (e.g., Dziembowski,
1977; Christensen-Dalsgaard and Gough, 1982). How-
ever, since the solar rotation axis is always close to the
plane of the sky, it follows from the symmetry of the
spherical harmonics that such observations are essentially
insensitive to modes where l−m is odd.

In practice, the analysis involves a number of steps.
The observed solar Dopplergram is transferred to a co-
latitude – longitude grid aligned with the solar rotation
axis, taking into account the variation with time of the
orientation of the rotation axis relative to the observer.
Also, to speed up the calculation of the required very
large number of integrals in Eq. (68) the integration in
longitude φ is carried out by means of a Fast Fourier
Transform. Some details of these procedures were de-
scribed by Brown (1985, 1988).

FIG. 10. Power spectrum of velocity observations from the
SOI/MDI experiment on the SOHO spacecraft. The ridges
of power concentration correspond to separate radial orders,
starting at the lowest frequency with the f mode, with n = 0.

2. Temporal analysis

The next step in the analysis is to isolate the individ-
ual modes, characterized by radial orders n, in the time
string Vl0m0 (t). This is done through Fourier analysis of
Vl0m0 (t). The result can be illustrated in a so-called l−ν
diagram, such as is shown in Fig. 10, where the power is
plotted against target degree l0 and frequency16 ν . This
clearly shows the concentration of power in ridges, each
corresponding to a given value of n (cf. Fig. 3). A clearer

16It is conventional to analyze observed frequencies in terms
of cyclic frequencies ν = ω/2π.
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impression of the power distribution is obtained by plot-
ting the power as a function of frequency, for a given tar-
get degree. As a special example, Fig. 11 shows a power
spectrum obtained from disk-averaged observations from
the BiSON network. It is evident that the power is indeed
concentrated in very narrow peaks, hardly resolved at
low frequencies; this reflects the intrinsic damping times
of the modes which at the lowest frequencies exceed sev-
eral months. At the maximum power, the amplitude per
mode is around 15 cm s−1. It should be noticed also that
the spectrum reflects the asymptotic frequency behavior
for low-degree p modes [cf. Eqs (47) and (48)]: thus sev-
eral cases of pairs of modes with l = 0, 2 or l = 1, 3 can
be identified.

From such spectra, the frequencies and other parame-
ters of the individual modes can be obtained by fitting.
This must take into account the statistical nature of the
power distribution, resulting from the stochastic excita-
tion (cf. Section V.F), and assuming a parametrized form
of the average line profile; although in principle asymmet-
rical profiles should be considered, most analyses to date
have been based on Lorentzian profiles characterized by
their widths and amplitudes (but see Toutain et al., 1998;
Chaplin et al., 1999a; Thiery et al., 2000). The fits are
further complicated by the leakage of power from other
(l, m) into the spectrum being analyzed.17

FIG. 11. Power spectrum of solar oscillations, obtained from
Doppler observations in light integrated over the disk of the
Sun. The ordinate is normalized to show velocity power per
frequency bin. The data were obtained from six observing
stations and span approximately four months. (See Elsworth
et al., 1995a.)

17For descriptions of the analysis techniques and the compli-
cations encountered, see for example Anderson et al. (1990),
Schou (1992), Hill et al. (1996), Appourchaux, Gizon &
Rabello-Soares (1998), and Appourchaux, Rabello-Soares &
Gizon (1998); an overview was provided by Schou (1998b).

To illustrate the quality of present data on solar oscil-
lations, Fig. 12 shows observed mean multiplet frequen-
cies νnl, obtained from the MDI instrument (Kosovichev
et al., 1997). Over a large part of the diagram the er-
rors, even when multiplied by 1000, are barely visible;
the relative error σ(ν)/ν is below 5×10−6 for more than
1000 multiplets. It is this extreme accuracy, in measured
quantities related directly to the properties of the solar
interior, which allows detailed investigations of solar in-
ternal structure.

The ridges in Fig. 12 extend to a limit where the nat-
ural line width of the modes is comparable to the sep-
aration between modes of adjacent degree; beyond this
limit neighboring modes partially merge as a result of
the spatial leakage, and a strict separation of modes
in frequency becomes difficult or impossible (Howe and
Thompson, 1998). At higher degree the mode frequencies
must be inferred from the location of ridges containing
overlapping contributions from several modes, the rela-
tive importance of which depend on the leakage matrix.
Thus the frequency determination requires accurate cal-
culation of the leakage matrix, taking also the horizontal
component of velocity into account (e.g., Rabello-Soares
et al., 2001). Although progress has been made in this
area (e.g., Rhodes et al., 2001), more work is required for
the determination of fully reliable high-degree frequen-
cies.

FIG. 12. Observed mean multiplet frequencies of solar oscil-
lations, from 144 days of MDI observations. The error bars
correspond to 1000 standard deviations. The smallest relative
errors σ(ν)/ν are below 3× 10−6.

The frequency splittings ∆νnlm = νnlm − νnl con-
tain information about solar internal rotation and other
possible departures from spherical symmetry (cf. Sec-
tion V.E). Although full utilization of the information
contained in the oscillation data requires use of the indi-
vidual frequencies νnlm, the determination of these fre-
quencies is often difficult or impossible. Thus it is cus-
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tomary to represent the frequency splittings by polyno-
mial expansions

νnlm = νnl0 +

jmax∑

j=1

aj(n, l)P(l)
j (m) , (69)

in terms of the so-called a coefficients aj(n, l); here the

P(l)
j are polynomials of degree j which satisfy the orthog-

onality relation
∑

m P
(l)
i (m)P(l)

j (m) = 0 for i 6= j (e.g.,
Ritzwoller and Lavely, 1991; Schou et al., 1994). Explicit
expressions for these polynomials were given by Pijpers
(1997). It follows from Section V.E that to lowest or-
der rotation gives rise to odd a coefficients. The even a
coefficients correspond to departures from spherical sym-
metry in solar structure, as well as to quadratic effects of
rotation.

3. Solar g modes?

As discussed in Section V.C.4, observation of g modes
would provide very important information about the
properties of the solar core. Indeed, the search for solar g
modes has been an important theme in the development
of helioseismology. The early indications of a 160-min sig-
nal in solar data (cf. Section II) hinted that such modes
might be present and led to continued efforts to detect
them. An important aspect in these searches was the
uniform period spacing that is predicted by asymptotic
theory (e.g., Delache and Scherrer, 1983; Fröhlich and
Delache, 1984). Unfortunately, although further indica-
tions of g modes were presented by Gabriel et al. (1998),
the reality of these detections, and the precise nature of
the modes, has not yet been definitely established. In
particular, Appourchaux et al. (2000a), analyzing sev-
eral different data sets, obtained stringent upper limits
to the amplitudes of solar g modes, substantially lower
than the early claims and barely consistent with the re-
sults of Gabriel et al. (1998).

C. Helioseismic inversion

Given the observed frequencies, an important goal is
to infer localized properties about the solar interior from
them through inversion. Several inversion techniques
have been developed for this purpose.18 Here I first il-
lustrate general principles by considering the somewhat
idealized case of inference of a spherically symmetric an-
gular velocity Ω(r) from observed rotational splittings

18For reviews, see, for example, Gough and Thompson
(1991), and Gough (1996a).

(cf. Eq. 62), and then discuss the techniques that are
applied in more realistic cases.

1. Principles of inversion

In the simple rotational inversion problem the data are
of the form

∆i =

∫ R

0

Ki(r)Ω(r)dr + εi , i = 1, . . . ,M , (70)

where, for notational simplicity, I represent the pair (n, l)
by the single index i; M is the number of modes in the
data set considered, ∆i is the scaled rotational splitting
m−1β−1

nl δωnlm, and εi is the observational error in ∆i.
The goal of the inversion is to determine an approxima-
tion Ω̄(r0) to the true angular velocity, as a function of
position r0 in the Sun. Inversion is often carried out
through linear operations on the data. Hence for each r0

there exists a set of inversion coefficients ci(r0) such that

Ω̄(r0) =
∑

i

ci(r0)∆i =

∫ R

0

K(r0, r)Ω(r)dr , (71)

using Eq. (70) and ignoring the error; here the averaging
kernel K(r0, r) is given by

K(r0, r) =
∑

i

ci(r0)Ki(r) . (72)

The inversion coefficients and averaging kernels clearly
depend on the choice of inversion method, and of possi-
ble parameters that enter into the method; indeed, the
inversion may be thought of as a way to determine coef-
ficients and averaging kernels such as to obtain as much
information about the angular velocity as possible.

The averaging kernels provide an indication of the res-
olution of the inversion; it is clearly desirable to achieve
averaging kernels that are sharply peaked around r = r0,
and with small amplitude far away from that point. The
inversion coefficients give information about the propa-
gation of errors from the data to the solution Ω̄(r0). In
particular, if the errors εi are assumed to be uncorre-
lated, with standard errors σ(∆i), the standard error in
the result of the inversion satisfies

σ[Ω̄(r0)]2 =
∑

i

ci(r0)2σ(∆i)
2 . (73)

The optimization of the inversion techniques requires a
trade-off between width of the averaging kernels and the
error.

In the techniques of optimally localized averages, de-
veloped by Backus and Gilbert (1970), the coefficients
ci(r0) are chosen such as to make K(r0, r) approximate
as far as possible a delta function δ(r−r0) centered on r0;
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then Ω̄(r0) provides an approximation to Ω(r0). In one
version this is achieved by determining the coefficients
ci(r0) such as to minimize

∫ R

0

J (r0, r)K(r0, r)
2dr + µ

∑

i

ci(r0)2σ(∆i)
2 , (74)

subject to the constraint

∫ R

0

K(r0, r)dr = 1 . (75)

Here J (r0, r) is a weight function which is small close
to r = r0 and large elsewhere; a common choice is
J (r0, r) = (r − r0)2. Furthermore, µ is a parameter
which, as discussed below, must be adjusted to optimize
the result.

Minimizing the first term in the expression (74) sub-
ject to Eq. (75) ensures that K(r0, r) is large close to r0,
where the weight function J (r0, r) is small, and small
elsewhere. This is precisely the required “delta-ness” of
the combined kernel. The effect of the second term in
Eq. (74) is to restrict σ2(Ω̄). The size of µ determines
the relative importance of the localization and the size of
the variance in the result. Hence, µ must be determined
to ensure a trade-off between the localization and the
error, measured by the width of K(r0, r) and σ[Ω̄(r0)],
respectively.

Pijpers and Thompson (1992, 1994) developed a com-
putationally more efficient method, where the inversion
coefficients are determined by matchingK(r0, r) to a pre-
scribed target function T (r0, r). They dubbed this the
SOLA technique (for Subtractive Optimally Localized
Averaging), to distinguish it from the MOLA technique
(for Multiplicative Optimally Localized Averaging) dis-
cussed above. Specifically, the coefficients ci(r0) are de-
termined by minimizing

∫ R

0

[K(r0, r)− T (r0, r)]
2

dr + µ
∑

i

ci(r0)2σ(∆i)
2 , (76)

where again µ is a trade-off parameter. In addition, the
width of T (r0, r) functions as a parameter, in most cases
depending on r0, of the method.19 As before, the inclu-
sion of the last term in Eq. (76) serves to limit the error in
the solution. An important advantage of the technique is
the ability to choose the target function such as to tailor
the averaging kernels to have specific properties.

A second commonly used class of techniques are the
regularized least-squares, or Tikhonov, methods (see, for

19It was argued by Thompson (1993) that for inversion of
acoustic data the resolution width is proportional to the local
sound speed c; thus the target width is often chosen to be
proportional to c(r0).

example, Craig and Brown, 1986). Here the solution Ω̄(r)
is parameterized, for example as a piecewise constant
function on a grid r0 < r1 < . . . < rN , with Ω̄(r) = Ωj on
the interval [rj−1, rj]; the parameters Ωj are determined
through a least-squares fit to the data. In general, this
procedure is regularized to obtain a smooth solution, by
including in the minimization a term which restricts the
square of Ω̄, or the square of its first or second derivative.
Thus, for example one may minimize

∑

i

σ(∆i)
−2

[∫ R

0

Ki(r)Ω̄(r)dr −∆i

]2

+µ2

∫ R

0

(
d2Ω̄

dr2

)2

dr , (77)

where in the last term a suitable discretized approxi-
mation to d2Ω̄/dr2, in terms of the Ωj , is used. The
minimization of Eq. (77) clearly leads to a set of lin-
ear equations for Ω̄j , defining the solution; however, it
is still the case that the solution is linearly related to
the data and hence is characterized by inversion coeffi-
cients and averaging kernels (cf. Eq. 71). By restricting
the second derivative the last term in Eq. (77) suppresses
rapid oscillations in the solution, and hence ensures that
it is smooth; the weight µ2 given to this term serves as
a trade-off parameter, determining the balance between
resolution and error for this method.

Christensen-Dalsgaard et al. (1990) made a compar-
ison of different inversion techniques as applied to this
problem, in terms of their error and resolution proper-
ties. Useful insight into the properties of inversion tech-
niques can be obtained from analyzing the inverse prob-
lem by means of (Generalized) Singular Value Decompo-
sition (e.g., Hansen, 1990, 1994; Christensen-Dalsgaard
et al., 1993). This can also be used to develop efficient al-
gorithms for the inversion, through pre-processing of the
problem (Christensen-Dalsgaard and Thompson, 1993;
Basu et al., 1997a).

It is evidently important to consider the statistical
properties of the inferences obtained through helioseis-
mic inversion. This requires reliable information about
the statistics of the data (oscillation frequencies or fre-
quency splittings), which may not always be available.
An important example is correlation between data errors;
although the correlation matrix has been estimated in a
few cases (e.g., Schou et al., 1995), off-diagonal elements
are generally not taken into account in the inversion. Yet
it was demonstrated by Gough (1996a) and Gough and
Sekii (2002) that this might have serious effects on the
inferences. Howe and Thompson (1996) noted the im-
portance of taking into account also the error correla-
tion between different points in the inference. Careful
evaluations of statistical aspects of helioseismic inversion
were provided by Genovese et al. (1995) and Gough et
al. (1996a).
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2. Inversion for solar rotation

In reality, we wish to infer the solar internal angu-
lar velocity Ω(r, θ) as a function of both distance r to
the center and co-latitude θ. Inversions to do so can be
based directly on Eq. (61), although quite often the ex-
pansion of the rotational splittings in a coefficients (cf.
Eq. 69) is used; it is straightforward to show that the
odd a coefficients are related to Ω(r, θ) by relations sim-
ilar to Eq. (61), with kernels that may be determined
from the kernels Knlm(r, θ). The inversion methods dis-
cussed above can be immediately generalized to the two-
dimensional case of inferring functions of (r, θ), including
the definitions of inversion coefficients and averaging ker-
nels (e.g., Schou et al., 1994). The main difficulty, com-
pared to the one-dimensional case, is the amount of data
that must be dealt with; while inversion for solar struc-
ture, based on average multiplet frequencies, requires the
analysis of typically at most a few thousand frequencies,
the splittings or a coefficients used for rotational inver-
sion number tens of thousands. For this reason early in-
vestigations were typically carried out with the so-called
1.5-dimensional methods (e.g., Brown et al., 1989) where
Ω(r, θ) was expanded suitably in θ, reducing the problem
to a series of one-dimensional inversions for the expan-
sion coefficients as functions of r. However, with the
development of computer power, and even more with the
development of efficient algorithms taking advantage of
the detailed structure of the problem (e.g., Larsen, 1997;
Larsen and Hansen, 1997), the fully two-dimensional in-
versions are entirely feasible and commonly used. An
overview of inversion methods and further references were
given by Schou et al. (1998), who also carried out tests
of the inversion procedures based on artificial data.

3. Inversion for solar structure

Inversion for solar structure is conceptually more com-
plicated than the rotational inversion. In the case of ro-
tation, the basic relation between the unknown angular
velocity and the data is linear to a high approximation.
In the structure case, on the other hand, the correspond-
ing relation between structure and multiplet frequencies
is highly nonlinear. This is dealt with through lineariza-
tion, on the assumption that a solar model is available
which is sufficiently close to the actual solar structure;
then the inversion can be based on Eq. (59). This is of a
form similar to the simple inverse problem in Eq. (70), al-
though with additional terms, and can be analyzed using
extensions of the methods discussed in Section VI.C.1.

Least-squares inversion can be carried out by
parametrizing the unknown functions δrc

2/c2, δrρ/ρ and
Fsurf , the parameters being determined through regular-
ized least-squares fitting similar to Eq. (77) (e.g., Dziem-
bowski et al., 1990; Antia and Basu, 1994a); as shown by

Basu and Thompson (1996) this allows tests for possible
systematic errors in the data through investigation of the
residuals. However, most inversions for solar structure
differences have applied generalizations of the optimally-
localized average techniques, by constructing linear com-
binations of the relations (59) with coefficient ci(r0) cho-
sen to isolate a specific feature of the structure. To in-
fer δrc

2/c2, for example, this is achieved with the SOLA
method by replacing the expression (76) to be minimized
by

∫ R

0

[
Kc2,ρ(r0, r)− T (r0, r)

]2
dr + β

∫ R

0

Cρ,c2(r0, r)
2dr

+µ
∑

i

σici(r0)cj(r0) , (78)

where again i numbers the multiplets (n, l), and σi is the
standard error of δωi/ωi. Here the averaging kernel is
now

Kc2,ρ(r0, r) =
∑

i

ci(r0)Ki
c2,ρ(r) (79)

and I have introduced the cross-term kernel

Cρ,c2(r0, r) =
∑

i

ci(r0)Ki
ρ,c2 (r) , (80)

which controls the (undesired) contribution of δrρ/ρ to
the solution. As in the rotation case, the minimization
of the expression (78) ensures that Kc2,ρ(r0, r) approxi-
mates the target T (r0, r) while suppressing the contribu-
tions from the cross term and the data errors; the effect
of the term in Fsurf is reduced by chosing the coefficients
to satisfy in addition the constraints

∑

i

ci(r0)I−1
i ψλ(ωi) = 0 , λ = 0, . . . ,Λ , (81)

for a suitably chosen set of functions ψλ, typically taken
to be polynomials of order λ (e.g., Däppen et al., 1991;
Kosovichev et al., 1992). A detailed discussion of imple-
mentation details, including the choice of the trade-off
parameters β and µ and of the properties of the target
function, was provided by Rabello-Soares et al. (1999).

For high-degree modes the surface effects are no longer
functions of frequency alone, as demonstrated by Brod-
sky & Vorontsov (1993). Di Mauro et al. (2002) have
developed a generalization of the constraints (81), based
on the asymptotic expressions of Brodsky & Vorontsov,
allowing suppression of the surface term for modes of de-
gree as high as 1000. The resulting inversion enabled
resolution of the upper few per cent of the solar radius,
including the helium and parts of the hydrogen ionization
zones, of great interest in connection with investigation
of the equation of state of the solar plasma (see also Sec-
tion VII.B).
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VII. HELIOSEISMIC INVESTIGATION OF SOLAR
STRUCTURE

The average multiplet frequencies νnl carry informa-
tion about the spherically symmetric component of solar
structure. This can be used to test solar models and ob-
tain information about the properties of matter in the
solar interior. As noted in Section V.B only quantities
such as density ρ, adiabatic exponent Γ1 or sound speed
c are immediately constrained by the frequencies; con-
straints on other aspects of the solar interior structure
require further assumptions about the models.

Already the early observations of high-degree modes
(Deubner, 1975; Rhodes et al., 1977) provided significant
constraints on the solar interior. Although these modes
are trapped in the outer part of the convection zone,
they are sensitive to its general adiabatic structure, and
comparison between the observed and computed frequen-
cies indicated that the convection zone was deeper than
previously assumed (Gough, 1977b; Ulrich and Rhodes,
1977). Furthermore, it was pointed out that the frequen-
cies were sensitive to details of the equation of state (e.g.,
Berthomieu et al., 1980; Lubow et al., 1980). The detec-
tion of low-degree modes, penetrating to the solar core,
allowed tests of more profound aspects of the models, in-
cluding effects of changes aimed at reducing the neutrino
flux (cf. Section IV.B). An early result was the likely
exclusion of solar models with abundances of helium and
heavier elements substantially below the standard values
(Christensen-Dalsgaard and Gough, 1980b). Elsworth et
al. (1990) obtained strong evidence against non-standard
models involving either mixing or energy transport by
weakly interacting massive particles. More generally, it
is now clear that all models that have been proposed
to reduce the solar neutrino flux to the observed values
through modifications to solar structure are inconsistent
with the helioseismic data.

The determination of frequencies for a broad range de-
grees by Duvall and Harvey (1983) opened up the pos-
sibility for inversions to determine the structure of sub-
stantial parts of the solar interior. Gough (1984a) noted
that Eq. (38) for the function F (w), determined from ob-
served quantities by Eq. (37), could be inverted, without
any reference to a solar model, to determine the sound
speed c as a function of r.20 This was applied to so-
lar data by Christensen-Dalsgaard et al. (1985) to infer
the sound speed in much of the solar interior, testing
the method by applying it to frequencies of solar mod-
els. The results showed clear indications of the base of
the convection zone, as a change in curvature in c(r); the
discrepancies in the radiative interior between the Sun

20A very similar technique for geophysical inversion was pre-
sented by Brodskǐı and Levshin (1977).

and the model could be interpreted as a deficit in the
opacity in the model, as was subsequently confirmed by
the opacity calculations by, for example, Iglesias et al.
(1992).

Equations (37) and (38) were derived from a very sim-
ple form of the asymptotic analysis, and hence the result-
ing inversion suffers from systematic errors. These can
be substantially reduced by basing the inverse analysis on
higher-order or otherwise improved asymptotic descrip-
tions (e.g., Vorontsov and Shibahashi, 1991; Marchenkov
et al., 2000), maintaining the advantage of being inde-
pendent of a solar model. Alternatively, the system-
atic errors can to some extent be eliminated by car-
rying out a differential asymptotic inversion, based on
a fit of Eq. (49) to frequency differences between the
Sun and a model (Christensen-Dalsgaard, Gough, and
Thompson, 1989); given the resulting H1(w), Eq. (51)
may be inverted analytically to infer the sound-speed
difference between the Sun and the model. This tech-
nique was used by Christensen-Dalsgaard et al. (1991)
to determine the depth of the solar convection zone as
dcz = (0.287 ± 0.003)R, a result also obtained indepen-
dently by Kosovichev and Fedorova (1991); the inference
has later been confirmed and substantially tightened by
Basu and Antia (1997) and Basu (1998) from fits of
H1(w) to sequences of models. Using the differential
asymptotic technique, Christensen-Dalsgaard, Proffitt,
and Thompson (1993) demonstrated that the inclusion
of helium settling very substantially reduced the sound-
speed differences between solar models and the Sun.

A. Inferences of sound speed and density

I now consider in more details the results of inferring
solar internal structure from the oscillation frequencies.
In much of the discussion I use as reference Model S of
Christensen-Dalsgaard et al. (1996); this falls within the
category of ‘standard solar models’ (see Section IV.A)
and has been used quite extensively in helioseismic in-
vestigations.

The simplest way to test a solar model is to consider
differences between observed frequencies and those of
the model. In Fig. 13, panel (a) shows relative differ-
ences between observed frequencies presented by Basu
et al. (1997b) and those of Model S. Although there is
some scatter, the differences depend predominantly on
frequency, and furthermore they are quite small at low
frequency. According to Section V.D this suggests that
the dominant contributions to the differences are located
in the near-surface layers of the model. This is confirmed
by considering differences scaled by Qnl (panel b), where
most of the scatter has been suppressed. Indeed, giving
the simplifications involved in the modeling of the near-
surface structure, and the use of adiabatic frequencies,
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it is hardly surprising that differences of this magnitude
are obtained.

FIG. 13. (a) Relative frequency differences, in the sense (ob-
servation) – (model). The observations are a combination of
BiSON whole-disk measurements (e.g., Elsworth et al., 1994)
and LOWL observations (Tomczyk et al., 1995), as described
by Basu et al. (1997b), while the computed frequencies are
for Model S. (b) The same, but scaled by the inertia ratio
Qnl (see Section V.D). (c) Scaled differences after subtrac-
tion of the fitted H2(ν), plotted against νnl/(l + 1/2) which
determines the lower turning point rt, shown as the upper
abscissa.

Even after scaling, there remains some scatter in the
differences, suggesting a dependence on the depth of pen-
etration of the mode and hence the presence of differ-
ences between the structure of the Sun and the model
that are not confined to the near-surface layers. These
effects can be isolated by subtracting a function of fre-
quency fitted to the points in Fig. 13b. The residual (see
Fig. 13c) is clearly highly systematic; the small intrinsic
scatter reflects both the extremely small observational
error and the extent to which frequency differences can
be represented by Eq. (49). It is evident that the be-
havior changes drastically for modes penetrating just be-
neath the base of the convection zone, with rt/R <∼ 0.7;
this suggests that there may be substantial differences
between the Sun and the model in this region.

Inversion for the differences in structure, without mak-
ing asymptotic approximations, was discussed in Sec-
tion VI.C.3. Typical results of such inversions, using the
SOLA method, are shown in Fig. 14. To illustrate the
resolution properties of the inversion, panel (c) shows se-
lected averaging kernels. It is evident that the inversion

has indeed succeeded in resolving the sound-speed dif-
ference between the Sun and the model in considerable
detail. Also, the 1-σ formal errors in the results are ex-
tremely small, below 2 × 10−4 in the bulk of the model,
owing to the precision of the observed multiplet frequen-
cies. Other, similar results were obtained by, for example,
Gough et al. (1996b) and Kosovichev et al. (1997).

FIG. 14. Results of sound-speed inversion. (a) Difference in
squared sound speed, in the sense (Sun) – (model), inferred
from inversion of the differences between the observed Bi-
SON and LOWL frequencies and the frequencies of two solar
models: closed circles are for Model S, and open circles for
a similar model, but ignoring element diffusion and settling.
(b) Results for Model S, on an expanded scale. The vertical
error bars are 1-σ errors on the inferred differences, while the
horizontal bars provide a measure of the resolution of the in-
version. (c) Selected averaging kernels K(r0, r), for fractional
target radii r0/R = 0.1, 0.3, 0.5, 0.7, 0.8 and 0.9. (Adapted
from Basu et al., 1997b.)

The inferred difference between the solar and the
Model S sound speed (cf. Fig. 14b) is striking. First of
all, the overall magnitude should be noted: the difference
is everywhere below about 5 × 10−3, indicating that c2

of the model agrees with that of the Sun to within 0.5
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per cent from below 0.1R to very near the surface. It is
important to recall that the model calculation contains
no free parameters which have been adjusted to achieve
this level of agreement. It is true that the computation
of solar models has been improved as a result of the con-
straints imposed by the steadily improving helioseismic
data, through the inclusion of settling as well as through
improved equation of state and opacities; as an example,
Fig. 14a compares inversion relative to Model S with the
use of a corresponding model which does not include dif-
fusion and settling. In this sense the current models have
been developed as a result of the helioseismic data. How-
ever, the improvements in physics have not been tailored
towards fitting the data; it is remarkable that they have
nonetheless resulted in a fit as good as the one shown in
Fig. 14b.

It should noticed, however, that the differences, al-
though small, are highly significant. Particularly promi-
nent is the peak in δrc

2/c2 just below the convection zone.
This is a feature shared by all recent investigations, based
on a variety of data and ‘standard’ solar model calcula-
tions; interestingly, recent updates to the opacities and
the solar initial composition have tended to increase the
discrepancies between the Sun and standard solar mod-
els. Similarly, the negative δrc

2/c2 around r = 0.2R is a
common feature to most inferences. On the other hand,
the results in the inner core, for r <∼ 0.1R, show some
variation between different data sets, although the in-
ferred differences are in all cases of a magnitude similar
to that shown in Fig. 14b. The inferences certainly show
that standard calculations are inadequate. I return to
possible causes for the discrepancies in Section XI.

Extensive comparisons have been carried out between
solar models and the results of helioseismic inversions, to
investigate effects of changes in the physics of the solar
interior.21 Basu et al. (2000) showed that the inferred
solar structure depends little on the assumed reference
model, thus confirming that the linearization in Eq. (59)
is justified. A detailed analysis of the sensitivity of the
helioseismic results to the composition profile and aspects
of the nuclear energy generation was presented by Turck-
Chièze et al. (2001b).

Although the most general information about the so-
lar interior is obtained from inverse analyses, as discussed
above, other techniques may be more sensitive to specific
features of the solar interior. In particular, localized fea-
tures in the Sun cause oscillatory perturbations in the
frequencies, as a function of mode order, resulting from
the change in the phase of the eigenfunctions at the lo-

21See, for example, Dziembowski et al. (1994), Richard et al.
(1996), Turck-Chièze et al. (1997), Brun et al. (1998, 1991),
Fiorentini et al. (1999), Morel et al. (1999), Bahcall et al.
(2001), Guzik et al. (2001), Neuforge-Verheecke et al. (2001).

cation of the feature as the order is varied (e.g., Gough,
1990). An interesting example is the rapid change in
the temperature gradient at the base of the convection
zone, which has a distinct signature in the oscillation fre-
quencies. Analyses of the observed frequencies have been
used to show that convective penetration into the radia-
tive region below the convection zone, at least assuming
a relatively simple model of the resulting structure, has
at most a very limited extent (e.g., Basu et al., 1994;
Monteiro et al., 1994; Roxburgh and Vorontsov, 1994b).

B. Physics and composition of the solar interior

The precision of the observed frequencies allows us to
go beyond the determination of the sound speed, to in-
vestigate finer details of the physics of the solar interior.
An important aspect is the equation of state, particularly
in the regions of partial ionization which to a large ex-
tent are found in the convection zone. This part of the
Sun has substantial advantages for helioseismic investi-
gations: since the stratification is very nearly adiabatic,
apart from a thin region near the top, the structure of the
convection zone depends essentially only on the equation
of state and composition, while it is not directly affected
by the opacity. The potential for helioseismic determi-
nation of the convection-zone composition and tests of
the equation of state was recognized by Gough (1984b)
(see also Däppen and Gough, 1986). An important and
potentially detectable effect of the thermodynamic state
and composition arises from Γ1 which is suppressed rel-
ative to the value of 5/3 for a fully ionized ideal gas in
the zones of partial ionization of abundant elements (e.g.,
Däppen, 1998). In particular, determination of the he-
lium abundance is in principle possible because the re-
duction in Γ1 in the second ionization zone of helium
obviously depends on the abundance of helium.

Investigations of these ionization zones can be carried
out in terms of the asymptotic description of the oscilla-
tions in Eqs (46) or (49), where the effects of the near-
surface regions are contained in the phase functions α(ω)
orH2(ω).22 As discussed above, the relatively sharp vari-
ation of Γ1 in the second helium ionization zone causes
an oscillation in the frequencies, reflected in the phase
functions, of a magnitude that depends on the helium
abundance. Determinations of the solar envelope he-
lium abundance by means of such asymptotic methods
were carried out by Vorontsov et al. (1991), Antia and

22e.g., Brodskǐı and Vorontsov (1989), Baturin and Mironova
(1990), Marchenkov and Vorontsov (1990), Pamyatnykh et al.
(1991), Christensen-Dalsgaard and Pérez Hernández (1992),
Gough and Vorontsov (1995).
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Basu (1994b), and Pérez Hernández and Christensen-
Dalsgaard (1994). Furthermore, the phase functions may
provide powerful diagnostics of the equation of state in
the near-surface region (e.g., Vorontsov et al., 1992; Ba-
turin et al., 2000).

To discuss the potential of helioseismology for testing
composition and thermodynamic properties, beyond the
asymptotic approximation, we note that the sound speed
is determined by p, ρ and Γ1 (cf. Eq. 29), where, in
turn, Γ1 = Γ1(p, ρ, Y, Z) may be obtained from the ther-
modynamical properties of the gas and the composition;
allowance should be made, however, for a possible error
(δΓ1)int in the equation of state used in the calculation
of the reference model, where (δΓ1)int is the difference
in Γ1 between the values obtained with the solar and
the model equations of state, at fixed p, ρ, Y, Z.23 Then
Eq. (59) can be rewritten, expressing δrc

2 in terms of
δrp, δrρ, δrY and (δΓ1)int; it is convenient to express the
result in terms of u = p/ρ, using also Eqs (2a) and (2b),
to obtain

δνnl
νnl

=

∫
Knl
u,Y

δru

u
dr +

∫
Knl
Y,uδrY dr

+

∫
Knl
c2,ρ

(
δΓ1

Γ1

)

int

dr +
Fsurf(νnl)

Inl
(82)

(see also Basu and Christensen-Dalsgaard, 1997). If it
is assumed that the model equation of state is adequate,
such that (δΓ1/Γ1)int is negligible, Eq. (82) may be in-
verted to determine δrY in the helium ionization zones
(e.g., Kosovichev et al., 1992); since the convection zone
is fully mixed, this provides a measure of the convection-
zone value Ye of the helium abundance. In a regular-
ized least-squares inversion, for example, δrY may be
assumed to be constant and hence taken outside the in-
tegral in equation Eq. (82) as a single parameter (e.g.,
Dziembowski et al., 1990, 1991).

In general, potential errors in the equation of state
must be taken into account. Basu and Christensen-
Dalsgaard (1997) showed how the differences in equation
of state might be taken explicitly into account in the in-
version, albeit at the expense of an increase in the error
in the solution; they also pointed out that the inversion
might be carried out to determine the intrinsic difference
in Γ1 between the solar and model equations of state.

To illustrate the sensitivity of such investigations,
Fig. 15 shows the results of inversions for Γ1 in the en-
tire solar interior (Elliot and Kosovichev, 1998). The
most striking aspect are the differences in the solar core
which are clearly resolved. These demonstrate that the

23For simplicity I neglect the effect of Z in the following; in
any case it is constrained (at least in the convection zone) by
the spectroscopic measurements.

inference is sensitive to the relativistic effects in the treat-
ment of the electrons, which were neglected in the origi-
nal MHD equation of state used in the top panel, but
included in the corrected version used in the bottom
panel.24 Although this is a fairly trivial correction, it
does illustrate the sensitivity of the helioseismic infer-
ences to subtle details of the equation of state.25

FIG. 15. The top figure shows the difference between Γ1 of a
solar model with the MHD equation of state and observation;
the bottom figure shows the result of including a relativistic
correction to MHD. The figures would be qualitatively similar
if OPAL had been used. (From Elliot and Kosovichev, 1998.)

Basu, Däppen, and Nayfonov (1999) made a careful
investigation of the equation of state in the convection
zone, determining intrinsic differences in Γ1 for several
different models using the OPAL or MHD equations of
state; this allows tests of these complex and conceptually
very different treatments of the thermodynamic state of
solar matter (cf. Section IV.A). Some results are illus-
trated in Fig. 16. Both equations of state clearly have
significant errors, particularly in the hydrogen and he-
lium ionization zones, for r >∼ 0.9R; it appears that the
OPAL formulation is closer to the Sun in most of the re-
gion considered, although the situation may be reversed
in the outer 2 – 3 % of the radius. Investigations such as

24Note that the average thermal energy of a particle in the
solar core, around 1.35 keV, is 0.3 % of the electron rest-mass
energy.

25Gong et al. (2001) recently presented a version of the MHD
equation of state which includes relativistic effects for the
electrons.
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these clearly have great potential for studying the com-
plex thermodynamic processes in the solar interior, of
substantial value also for other applications of the prop-
erties of high-temperature plasmas.

Several recent determinations of the convection-zone
helium abundance Ye have been made from helioseismic
analysis, using both the MHD and the OPAL equations
of state. The values tend to be in the range 0.24 – 0.25,
with some dependence on the equation of state, the data
set and the analysis method (e.g., Basu and Antia, 1995;
Richard et al., 1998; Basu, 1998), although an OLA in-
version by Kosovichev (1997) yielded rather more dis-
parate values: Ye = 0.23 using MHD and Ye = 0.25
using OPAL. It is striking, in all these cases, that the
values obtained are substantially below the initial value
Y0 = 0.27−0.28 required to calibrate the models to have
the present solar luminosity. This confirms the impor-
tance of settling of helium which reduces the envelope
helium abundance during evolution; in fact, in Model
S the present value, Ye = 0.245, is in reasonably good
agreement with the helioseismic determinations. How-
ever, it is evident that the uncertainty resulting from
the possible errors in the equation of state requires fur-
ther work; improved results on the helium abundance and
the properties of the equation of state may be expected
when reliable data on high-degree modes become avail-
able (e.g., Rabello-Soares et al., 2000; Di Mauro et al.,
2002).

FIG. 16. Relative difference between Γ1 obtained from an in-
version of helioseismological data and Γ1 for two solar models.
in the sense “Sun – model”. Only the “intrinsic” difference
in Γ1 is shown, that is, the part of the difference due to the
equation of state (see text). Lines have been drawn through
the results to guide the eye. The closed circles connected by a
solid line are results obtained with an MHD model, the open
circles connected with a dashed line are results with an OPAL
model. (Adapted from Basu, Däppen, and Nayfonov, 1999.)

Beneath the convection zone, solar structure depends
on the equation of state, opacity, composition profile and,

in the core, the nuclear energy generation rates. Here,
furthermore, Γ1 has very little sensitivity to composition,
at the level of the present accuracy of the inversions; the
determination of the composition depends mainly on its
effects on the mean molecular weight µ and hence the
sound speed (cf. Eq. 33), assuming that the temperature
is essentially known. Thus further constraints, based on
the equations of stellar structure and the assumption of
the relevant physical properties, are required to infer the
composition profile. Gough and Kosovichev (1990) re-
formulated the inverse problem in terms of corrections
to composition, using the equations of stellar structure,
to determine the hydrogen abundance in the solar core.
This procedure was also adopted by Kosovichev (1997).
Alternatively, Eqs (2) can be solved, under the constraint
that the model sound speed match the helioseismic in-
ference, but with no assumption about the hydrogen-
abundance profile X(r), which is then determined as
a result of the analysis (Shibahashi and Takata, 1996;
Antia and Chitre, 1998; Takata and Shibahashi, 1998).
The results of these analyses show considerable scatter,
but they generally confirm the gradient in the hydro-
gen abundance just below the convection zone found in
solar models, resulting from settling (cf. Fig. 1). How-
ever, there is a tendency for the gradient to be less steep,
indicating the presence of processes that might partly
counteract the settling. (For a summary of these results,
see Christensen-Dalsgaard, 1998.) As discussed in Sec-
tion XI, weak mixing is indeed a possible explanation for
the bump in δrc

2/c2 just beneath the convection zone.
If the composition profile is assumed to be known, on

the other hand, other aspects of the solar interior may
be studied. Tripathy and Christensen-Dalsgaard (1998)
made a detailed investigation of the effects of opacity
modifications on solar structure and on this basis Tripa-
thy et al. (1998) attempted to determine changes to the
opacity that could account for the inferred sound-speed
difference illustrated in Fig. 14b. The required changes,
of only a few per cent, were probably within the general
uncertainty in current opacity calculations, although it
is less clear whether their detailed behavior was physi-
cally realistic. There is little doubt, in any case, that the
explanation of the inferred sound-speed difference will re-
quire modifications both to the composition profile and
to the opacity.

C. Helioseismology and the solar neutrino problem

As discussed in Section IV.B, the discrepancy between
the predicted and measured flux of solar neutrinos has
cast some doubt on calculations of solar models. The so-
lar neutrino flux is very sensitive to the temperature of
the solar core. Thus only relatively modest changes to
the structure of the solar core, reducing the central tem-
perature, are required to bring the computed neutrino
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flux into better agreement with the observations. This
is the background for the large number of attempts that
have been made to construct models with a reduced neu-
trino flux. It is clear, however, that the close agreement
between solar structure and a standard solar model sug-
gests that such modifications are unlikely to be consistent
with the helioseismic inferences. The required reduction
by roughly a factor of two of the flux of high-energy neu-
trinos corresponds approximately to a reduction in the
central temperature of the Sun of about 3 per cent; if it
is assumed that other aspects of the model are roughly
unchanged, this corresponds to a similar decrease in c2,
which is in obvious conflict with the helioseismically in-
ferred sound-speed difference (e.g., Bahcall et al., 1997).
Similar conclusions have been reached by a number of
other investigations.26 More careful analyses, determin-
ing limits on the neutrino flux given the helioseismic con-
straints, generally confirm this conclusion (e.g., Antia
and Chitre, 1997; Takata and Shibahashi, 1998); Watan-
abe and Shibahashi (2001) showed that, even assuming a
reduced core abundance of heavy elements, models could
not be constructed which were consistent with both the
neutrino and the helioseismic data. Also, Turck-Chièze
et al. (2001a) recently constructed a model essentially
consistent with the seismic data and demonstrated that
the neutrino emission from this model was very close to
that of a standard solar model.

It should be noted, none the less, that conclusions
based on helioseismology concerning the solar neutrino
production must be regarded with a little caution. Since
helioseismology essentially provides inferences of T/µ,
not of T and µ separately, a model might in princi-
ple be constructed where T and µ are both modified in
such a way that their ratio is unchanged, while the neu-
trino flux is reduced substantially. Some reduction in the
computed neutrino flux is also possible, without increas-
ing the discrepancy in sound speed, by simply changing
the assumed nuclear reaction parameters suitably within
their error limits (e.g., Brun et al., 1998). Even so, the
helioseismic success of the normal solar models strongly
suggests that the solution to the neutrino problem should
be sought not in the physics of the solar interior but
rather in the physics of the neutrino.

This conclusion was dramatically confirmed by the
recent results from the Sudbury Neutrino Observa-
tory which, when combined with data from the Super-
Kamiokande experiment, showed direct evidence for
solar-neutrino oscillations and yielded a total rate con-
sistent within errors with standard models (Ahmad et
al., 2001; see Section IV.B). Given these results there

26e.g., Dziembowski et al. (1994), Ricci et al. (1997), Turck-
Chièze et al. (1998), Bahcall et al. (2001).

seems little doubt of the existence of neutrino oscilla-
tions; also, the results provide independent confirmation
of the standard solar model. With this, the role of he-
lioseismology in the investigations of solar neutrinos has
changed. Previously the main issue was to provide ev-
idence for or against the standard solar models. Now,
the goal is to use helioseismology, together with other
relevant information about the solar core, to constrain
as far as possible the rate of neutrino generation in the
Sun27; together with the measurements on Earth of the
detection rate of various types of neutrinos this may offer
the best hope for constraining the properties of the neu-
trinos, such as masses and interaction parameters. The
importance of this to the further development of physics
is obvious.

VIII. INFERENCES OF SOLAR INTERNAL ROTATION

The early inferences of solar internal rotation by Du-
vall et al. (1984) were based on predominantly sectoral
modes, with m ' ±l, and hence provided information
about the radial variation of rotation in a region around
the solar equator. In particular, they established that
the interior of the Sun rotates at approximately the same
speed as the surface, with no evidence for a rapidly ro-
tating core. To determine the angular velocity Ω(r, θ) as
a function of both radius and latitude, through inversion
of Eq. (61), observations of rotational splitting as a func-
tion of the azimuthal order m are required. These became
available with the advent of fully two-dimensional obser-
vations of solar oscillations (Brown, 1985; Rhodes et al.,
1987; Libbrecht, 1988, 1989). Already the initial analy-
ses of these data showed a striking variation of rotation
in the solar interior: the convection zone largely shared
the latitude variation observed on the surface (cf. Eq. 1),
with little variation with depth, whereas the radiative in-
terior seemed to rotate like a solid body.28 This was at
variance with earlier models of the dynamics of the con-
vection zone (cf. Section IV.C), and created problems for
the dynamo models of the solar magnetic activity (e.g.,
Gilman et al., 1989).

27It was noted by Gough (2001bc) that this will require care-
ful attention to the details of helioseismic inferences about the
solar core; in particular, departures from spherical symmetry
may have to be constrained.

28e.g., Brown and Morrow (1987), Christensen-Dalsgaard
and Schou (1988), Kosovichev (1988), Brown et al. (1989),
Dziembowski et al. (1989), Rhodes et al. (1990), Thompson
(1990), Goode et al. (1991).
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FIG. 17. Inferred rotation rate Ω/2π in a quadrant of the
Sun, obtained by means of SOLA inversion of 144 days of MDI
data. The equator is at the horizontal axis and the pole is at
the vertical axis, both axes being labelled by fractional radius.
Some contours are labelled in nHz, and, for clarity, selected
contours are shown as bold. The dashed circle is at the base
of the convection zone and the tick marks at the edge of the
outer circle are at latitudes 15◦, 30◦, 45◦, 60◦, and 75◦. The
shaded area indicates the region in the Sun where no reliable
inference can be made with the current data. (Adapted from
Schou et al., 1998.)

Very extensive results on rotational splitting have been
obtained in the last few years.29 These include data from
the GONG network in the form of individual frequency
splittings, and from the SOI/MDI instrument on SOHO
in the form of a coefficients extending as high as a35. As
discussed in Section VI.C.2, these observational devel-
opments have been accompanied by the development of
efficient inversion algorithms. Schou et al. (1998) carried
out analyses of the data from the first 144 days of data
from SOI/MDI using a variety of inversion techniques.
Figure 17 shows the inferred angular velocity, obtained
by means of SOLA inversion. To illustrate some of the
features of the solution more clearly, Fig. 18 shows cuts at
fixed latitudes. In accordance with the earlier results, the
angular velocity depends predominantly on latitude in
the convection zone, while there is little significant vari-
ation in the radiative interior. The transition between
these two regions, denoted the tachocline by Spiegel and
Zahn (1992), appears to be quite sharp, and to coincide
approximately with the base of the convection zone.

29Examples of recent inferences of solar rotation are provided
by Thompson et al. (1996), Wilson et al. (1997), and Corbard
et al. (1997).

FIG. 18. Inferred rotation rate Ω/2π as a function of radius
at the latitudes indicated, obtained from inversion of 144 days
of MDI data. The circles with 1-σ error bars show results of
a SOLA inversion, while the dashed lines with 1-σ error band
were obtained with RLS inversion. The heavy vertical dashed
line marks the base of the convection zone. (Adapted from
Schou et al., 1998.)

The quality of the MDI data is such that finer details
in the rotation become very apparent. As was found
in earlier analyses, the angular velocity increases with
depth beneath the surface, at least at low latitude, the
maximum angular velocity occurring on the equator at a
depth of around 0.05R. Korzennik et al. (1990), noting
the same feature in the equatorial rotation rate, pointed
out that this variation could be related to the different
rotation rates inferred from tracking of surface features,
assuming that these features were anchored at different
depths.

The tachocline is of very considerable dynamical in-
terest, as providing the coupling between the latitude-
varying rotation in the convection zone and the nearly
solid rotation below it. Furthermore, it seems likely that
the solar dynamo must operate in this region, with prop-
erties that depend sensitively on the details of the vari-
ation in angular velocity (e.g., Parker, 1993). The ap-
parent width of the tachocline in Fig. 18 in part reflects
the finite resolution of the inversion, as determined by
the radial extent of the averaging kernels. This must be
taken into account in estimating the true width of the
tachocline. Estimates of the width and other properties
were made by Kosovichev (1996a) and Corbard et al.
(1998a, 1999). Charbonneau et al. (1999) applied sev-
eral analysis techniques to LOWL data; they obtained a
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tachocline width30 of (0.039±0.013)R and an equatorial
central radius rc = (0.693± 0.002)R, essentially placing
the transition beneath the convection zone. As noted pre-
viously by Antia et al. (1998) and Di Mauro and Dziem-
bowski (1998), Charbonneau et al. found some indication
that rc increased towards the pole, with an equator-to-
pole variation of ∆rc = (0.024 ± 0.004)R, in the sense
that the tachocline is prolate.

Although the overall features of rotation, as presented
above, have been found using several different data sets
and analysis methods, it should be mentioned that there
are problems at the level of finer details, particularly at
higher latitudes. These have become apparent in compar-
isons between results based on data from the GONG and
SOI/MDI projects, in both cases analyzed with the pro-
cedures used by both projects (e.g., Howe et al., 2001a;
Schou et al., 2002). The origin of the differences in the in-
ferred rotation rates can be traced back mainly to differ-
ences in the analysis procedures used to determine the os-
cillation frequencies from the spherical-harmonic-filtered
time series (cf. Section VI.B.2). Also, as illustrated by
the comparison of the SOLA and RLS results in Fig. 18,
different inversion methods may give different results at
high latitude. Clearly, the underlying causes for these
various differences, and how to correct for them, need to
be identified.

As discussed in Section IV.C, models of solar evolution
have suggested the possible existence in the present Sun
of a rapidly rotating core. Thus it is of obvious inter-
est to infer the properties of rotation close to the solar
center. Unfortunately, this is extremely difficult and the
results obtained so far are somewhat contradictory. Only
for modes of the lowest degrees do the kernels extend into
the core and even for these the contribution from the core
to the rotational splitting is small.31 In addition, the ob-
servational determination of the splitting is difficult at
low degree: here only a few values of m are available, the
total splitting may be comparable to the natural widths
of the peaks in the oscillation power spectra, and the
common procedures for frequency determination may in-
troduce a systematic bias (Appourchaux et al., 2000b).
A review of the problems in determining the core rota-
tion, and of the results, was given by Eff-Darwich and
Korzennik (1998). As a result of the small contribution
from the core to the splitting, even fairly modest differ-
ences in the observed splittings of low-degree modes can

30The width is defined as the parameter w in a representa-
tion of the transition of the form 0.5{1 + erf[2(r − rc)/w]},
where rc is the central location of the transition.

31The problem is more severe than for structure inversion,
which also includes modes of degree l = 0; these obviously
have no rotational splitting. Furthermore, the kernels for ro-
tation are suppressed by geometrical effects for small r.

give disparate results for the core rotation. Indeed, recent
published values range from somewhat higher than the
surface rotation rate (e.g., Gizon et al., 1997; Corbard
et al., 1998b), over rates consistent with the bulk of the
envelope (e.g., Lazrek et al., 1996) to rotation substan-
tially below the surface rate (e.g., Elsworth et al., 1995b;
Tomczyk, Schou, and Thompson, 1995). Charbonneau
et al. (1998) showed, based on LOWL data, that a core
of radius 0.1R could rotate at no more than twice the
surface rate. Chaplin et al. (1999b) attempted to obtain
averages of rotation localized to the core, from a combi-
nation of BiSON and LOWL splittings. The results were
consistent with constant rotation of the radiative inte-
rior, although with a possible suggestion of a down-turn
in the core; analysis of the averaging kernels showed that
constraining the measure of rotation to the inner 20 %
of the solar radius was only possible at the expense of
very substantial errors in the inferred rotation rate. Re-
sults consistent with uniform rotation of the deep interior
were also obtained by Chaplin et al. (2001a) who made
a careful simulation of possible systematic errors in the
determination of the low-degree frequency splittings.

IX. THE CHANGING, ASPHERICAL SUN

The Sun is not a static object. The slow evolutionary
changes are likely too small to be detectable within a hu-
man lifetime; however, the changes associated with the
22-year solar magnetic cycle (cf. Section IV.D) may be
expected to influence the structure and dynamics of the
solar interior with measurable consequences for the oscil-
lation frequencies. One may hope that this can provide
information about the inner workings of the magnetic cy-
cle, including the possible dynamo mechanisms respon-
sible for it. In particular, dynamo action just below the
convection zone might produce organized magnetic fields
of sufficient strength to be detectable in the oscillation
frequencies.

The first evidence for frequency changes was obtained
by Woodard and Noyes (1985) who found an average
decrease in frequencies of low-degree modes of around
0.42µHz from 1980 (close to solar maximum) to 1984
(near solar minimum). More extensive data by Libbrecht
and Woodard (1990, 1991), covering a substantial range
in frequency and degree, confirmed the general trend and
provided information about the dependence of the fre-
quency change on mode parameters. It was found that
the change largely scaled as the inverse mode inertia,
much as do the effects of near-surface errors (cf. Sec-
tion V.B). From 1986 to 1989 (i.e., essentially from min-
imum to close to maximum) the frequencies increased by
up to around 0.8µHz; the change varied strongly with
frequency, from being negligible below 1.5 mHz to a max-
imum at 4 mHz. On this basis it was concluded that the
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dominant source of the frequency variation was localized
very close to the solar surface. This was confirmed in a
careful comparison of results from several different data
sets by Chaplin et al. (2001b). Furthermore, the fre-
quency variations have been shown to be closely corre-
lated with surface activity, even on time scales of months
(e.g., Woodard et al., 1991; Bachmann and Brown, 1993;
Rhodes et al., 1993; Elsworth et al., 1994; Chaplin et al.,
2001c).

A closely related issue are the effects of departures
from spherical symmetry. The resulting variations in
wave speed with latitude make a contribution to the fre-
quency splitting in azimuthal order that is independent
of the sign of m; thus, in terms of the expansion given
in Eq. (69) these effects give rise to even a coefficients.32

Early measurements of these coefficients were reported
by Duvall et al. (1986) and Brown and Morrow (1987).
These coefficients, and their variation during the solar
cycle, behaved in a manner corresponding to the time-
varying latitude dependence of the solar surface temper-
ature and magnetic field (e.g., Kuhn, 1988; Goode and
Kuhn, 1990; Woodard and Libbrecht, 1993). Extensive
data during the rising phase of the present solar cycle
have been obtained from the GONG and SOI/MDI ex-
periments, greatly strengthening the evidence for a close
correlation between the variations in the oscillation fre-
quencies and the surface magnetic field (Dziembowski et
al., 1998, 2000; Howe et al., 1999). Antia et al. (2001)
considered data covering the period 1995–2000 from both
GONG and SOI/MDI, and extending to a14. They again
found a very close correlation between the variations in
the a coefficients and in the corresponding components of
a Legendre-polynomial expansion of the surface magnetic
flux; this strongly suggests that the behavior of the oscil-
lation frequencies is directly related to the near-surface
magnetic field. Furthermore, from an inverse analysis of
the changes they confirmed the superficial nature of the
changes in the wave-propagation speed.

From these results it may appear that the measure-
ments of the frequency changes and the even a coefficients
have so far added little to our knowledge about solar
variability. Nonetheless, it is still of considerable interest
to investigate the causes for these effects. Gough and
Thompson (1988) concluded that the asphericities caus-
ing the even a coefficients in the expansion of frequency
splittings were likely of magnetic origin. Goldreich et al.
(1991) carried out an analysis of the effects of changes
in the near-surface magnetic field and the entropy of the

32Quadratic effects of rotation (cf. Section V.E) also con-
tribute to the even a coefficients; these contributions can be
calculated from the helioseismically inferred angular velocity;
see, for example, Dziembowski et al. (1998) and Antia et al.
(2000b).

convection zone and similarly concluded that the domi-
nant cause of the frequency change with time was mag-
netic. A subsequent analysis by Balmforth et al. (1996)
confirmed that entropy perturbations alone were unlikely
to be able to account for the observed frequency changes.

The frequency changes for low-degree modes generally
follow the same behavior as seen at high degrees (e.g.,
Elsworth et al., 1994). However, closer inspection re-
veals striking differences: Jiménez-Reyes et al. (1998)
found that, when plotted against magnetic flux, the fre-
quency changes exhibited hysteresis, with the frequency
at a given flux being larger during the rising phase of
the solar cycle than during the declining phase. Moreno-
Insertis and Solanki (2000) showed that this behavior
could be understood in terms of the variation with phase
of the solar cycle of the distribution of the magnetic field
over the solar surface, as could variations in the frequency
change with degree. This behavior is clearly closely re-
lated to the changes in the even a coefficients during the
solar cycle, discussed above.

According to Eq. (53) the f-mode frequencies are de-
termined essentially by the solar surface radius. This has
been used to estimate corrections to the commonly used
value by comparing the observed frequencies to those of
solar models (Schou et al., 1997; Antia, 1998). Dziem-
bowski et al. (1998) and Antia et al. (2000a) noted that
the inferred radius changed with time, reflecting possible
solar-cycle changes in the solar surface radius. However,
it was pointed out by Dziembowski et al. (2001) that,
as already noted by Gough (1993), Eq. (53) should be
corrected for the finite radial extent of the f-mode eigen-
functions; thus the inferred radius change may in fact
take place in subsurface layers, resulting from changes in
magnetic fields or temperature stratification, with little
effect on the photospheric radius Rph. Dziembowski et
al. (2001) concluded that the change in Rph associated
with the solar cycle is only a few kilometres, of uncertain
sign, and hence certainly too small to have a significant
effect on the solar irradiance.

Although the evidence discussed so far points to a su-
perficial nature of the effects of solar activity on solar
structure and oscillation frequencies, it is possible that
magnetic fields, or other aspherical perturbations, suf-
ficiently strong to have an observable effect may exist
deeper within the Sun. Gough et al. (1996b) carried
out inversion of even a coefficients to search for radial
variations of the asphericity, concluding that it was con-
fined to a shallow layer close to the surface. Antia et al.
(2000b) found evidence for an aspherical perturbation
at r ' 0.96R; by analyzing frequencies of modes pene-
trating beyond the base of the convection zone they also
placed an upper limit of around 30 Tesla on a possible
toroidal magnetic field located in this region. Evidence
for asphericity in the wave speed over a range of depths
in the convection zone was also found by Dziembowski
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et al. (2000). Finally, from analysis of SOI/MDI data
Antia et al. (2001) found a significant peak, at r = 0.92R
and a latitude of 60◦, in the time-averaged asphericity,
with a similar though weaker signal in GONG data. The
physical nature of these perturbations is so far unknown;
in particular, as shown by Zweibel and Gough (1995) it
is very difficult to distinguish between direct magnetic
effects and effects of variations in the sound speed.

FIG. 19. The evolution with time in the zonal flows, inferred
from SOLA inversions of data from SOI/MDI, after subtrac-
tion of the time-averaged rotation rate. The results are pre-
sented as a function of time and latitude, the grey scale at the
right giving the scale in nHz. The top panel is at a radius of
0.99R and the bottom panel is at 0.92R. Note that the plot
has been symmetrized around the equator, since global ro-
tational inversion only senses the symmetrical component of
the rotation rate (cf. Section V.E). The white vertical stripes
correspond to periods where the SOHO spacecraft was tem-
porarily non-functional. (Adapted from Howe et al., 2001b.)

Solar activity also affects the dynamics of the solar con-
vection zone. In Doppler observations of the solar sur-
face Howard and LaBonte (1980) found bands of slightly
faster and slower rotation, which they called torsional
oscillations, shifting towards lower latitudes as the so-
lar cycle progressed (for more recent results, see Ulrich,
1998, 2001). Kosovichev and Schou (1997) and Schou
et al. (1998) found similar variations with latitude in the
rotation rate inferred from helioseismic inversion, extend-
ing over perhaps 5 % of the solar radius. By analyzing
f-mode frequency splittings, Schou (1999) showed that
these bands shifted towards the equator with time, in a
manner very similar to the surface torsional oscillations.
Howe et al. (2000a, 2001b) studied the depth variation
and time evolution of these so-called zonal flows, as illus-
trated in Fig. 19. Here data from SOI/MDI have been
analyzed in 72-day segments, to infer the rotation rate
during each of these periods; an average over all seg-

ments over time, at each latitude and radial location,
has been subtracted, and the resulting residuals are dis-
played. The bands of faster rotation converging towards
the equator are evident. Remarkably, these can be fol-
lowed below the surface to a depth of at least 8 % of the
solar radius; on the solar surface, they correspond closely
to the variations first seen by Howard and LaBonte. Thus
these variations involve a substantial fraction of the solar
convection zone. Similar results were obtained by An-
tia and Basu (2000, 2001). Vorontsov et al. (2002) an-
alyzed SOI/MDI data using an adaptive regularization
technique and found indications that the flows involve
the entire convection zone. The physical origin of these
zonal flows is as yet not clear; it is interesting, however,
that Covas et al. (2000) found a similar spatial and tem-
poral behavior of rotation in a mean-field dynamo model
of the solar magnetic variations.

Birch and Kosovichev (1998) and Schou et al. (1998)
found that the near-polar rotation was substantially
slower than expected from the directly observed surface
rotation rate (cf. Eq. 1) or from a simple extrapolation
from results at lower latitude. Similarly, Fig. 19 shows
substantial variations at higher latitudes, not obviously
related to the zonal flows at lower latitude. These varia-
tions can be followed to latitudes of at least 80◦ (Schou,
1999; Antia and Basu, 2001).
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FIG. 20. Deviation from the mean rotation rate inferred from
inversions at various locations near the base of the convection
zone, as a function of time. Open circles represent results
from the GONG network, and filled triangles are from the
SOI/MDI experiment. (From Howe et al., 2001b.)

Variations in the rotation rate at even greater depth
were detected by Howe et al. (2000b; see also Howe et al.,
2001b). These are illustrated in Fig. 20, which again is
based on subtracting time-averaged rotation rates from
the results for time segments. The most striking varia-
tion, seen both in data from GONG and SOI/MDI, is an
oscillation with a period of around 1.3 y in the equato-
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rial region at the base of the convection zone.33 Careful
analyses have shown that this cannot simply be an effect
of systematic errors in the observations with an annual
period.34 At the depth of 0.63R, well below the con-
vection zone, there are indications of an oscillation with
the same period but the opposite phase. Significant vari-
ations are also found at higher latitude, although with
less regular periodicities. Possible physical mechanisms
that may be responsible for this behavior were discussed
by Thompson (2001); a particularly interesting model
results from dynamo calculations which exhibit period-
halving bifurcations (Covas et al., 2001).

X. LOCAL HELIOSEISMOLOGY

So far, I have considered global modes of solar os-
cillation, resulting from the interference of acoustic or
surface-gravity waves travelling through the Sun. The
frequencies of these modes reflect the properties, such as
structure and rotation, of that part of the Sun through
which travel the waves making up a given mode. By
suitably combining the frequencies of these modes, in-
formation about structure and rotation can be localized
to limited regions in radius and latitude, providing infer-
ences about the variation of these properties with posi-
tion within the Sun.

Powerful though they are, such analyses have obvious
limitations. The global modes extend over all longitudes;
thus analysis of their frequencies provide essentially no
information about longitude variation of solar proper-
ties; furthermore, as discussed in Section V.E, they de-
pend only on that component of, e.g., rotation which
is symmetric around the equator. Also, the properties
of global modes have little sensitivity to meridional or
more complex flows, such as large-scale convective ed-
dies, which may be present in the solar convection zone.
Further, although the modes are undoubtedly affected
by sunspots or other manifestations of strong localized
magnetic fields, these effects do not lend themselves to
detailed inferences of, say the three-dimensional subsur-
face structure of a sunspot.

However, it is possible to analyse the observations in
ways that provide more general information. The wave
field in a given region of the solar surface is affected by
the properties of that region, including the subsurface

33Interestingly, evidence for variations with a similar period
has been detected in solar activity and the solar wind; e.g.,
Ichimoto et al. (1985).

34In an independent analysis, Basu and Antia (2001) failed
to confirm these findings; although some of their results
showed variations reminiscent of those illustrated in Fig. 20,
the authors did not consider them to be significant.

layers down to the depth of penetration, determined by
the lower turning point (cf. Eq. 35) of the waves that
are observed. By analyzing the properties of such lo-
cal waves, it is possible to infer local three-dimensional
structures and flows beneath the solar surface.

Early investigations of this nature considered the wave
field around sunspots. By carrying out a so-called Han-
kel transform of the waves in cylindrical coordinates,
centered on the spot, Braun, Duvall & LaBonte (1987)
demonstrated that wave energy was absorbed or scat-
tered by the spot. This provided the potential for study-
ing the subsurface structure of active regions. Brown
(1990) presented a technique for inverting such data to
obtain a map of active-region structure; he noted that,
unlike ‘classical’ helioseismology using oscillations fre-
quencies, this is based on observations of amplitudes and
phases of the waves. A detailed review of the seismology
of active regions was given by Bogdan & Braun (1995).

Studies of local properties of the solar interior, known
as local helioseismology, are developing very rapidly, al-
though they have not yet reached the level of maturity of
global helioseismology. A basic difficulty which has not
yet been fully solved is the treatment of the forward prob-
lem, i.e., the calculation of the wave field and the result-
ing observables for a given subsurface structure and flow.
(In contrast, in global helioseismology it is straightfor-
ward to compute oscillation frequencies for a solar model
with an assumed rotation law.) As a result, the infer-
ences made through local analysis are somewhat difficult
to interpret, in terms of their resolution and the extent to
which they reflect the true properties of the solar interior,
although substantial progress has recently been made in
this area.

HzµFrequency = 3500 HzµFrequency = 4000

FIG. 21. Ring diagrams obtained as cuts through tri-
dimensional power spectra at the frequencies indicated; the
data used are SOI/MDI full-disc Dopplergrams. Each ring
corresponds to a value of the radial order n. (Adapted from
González Hernández et al. 1998a.)

A. Ring-diagram analysis

Possibly the first analysis of effects on oscillation fre-
quencies of local perturbations was presented by Gough
and Toomre (1983). They pointed out that the frequen-
cies would be changed by a local velocity field, through
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the advection of the wave pattern; furthermore, they es-
tablished the frequency perturbation resulting from a lo-
cal perturbation to the sound speed. This suggestion was
developed into a practical procedure by Hill (1988). He
considered the power spectrum, based on the oscillation
field over a restricted area of the solar surface, as a func-
tion of frequency ω and the components kx and ky of the
horizontal wave vector in the longitude and latitude di-
rections. In the (ω, kx, ky) space the results are ‘trumpet-
like’ surfaces, obtained by rotating the ridges in Fig. 10
around the frequency axis. The analysis is carried out
by considering cuts through these surfaces at fixed fre-
quency: the result is a set of rings, each corresponding
to a ridge in the l − ν diagram. (cf. Fig. 21). As shown
by Hill (1988) these rings are shifted by the underlying
horizontal flow field, the shift of a given ring being given
by an average of the velocity weighted by the relevant
radial eigenfunction. Similarly, variations in the subsur-
face sound speed cause a distortion of the rings. Thus,
by considering different rings and different frequencies, a
set of data is obtained from which the depth variation
of the flow or the sound speed can be inferred by means
of inversion techniques such as those described in Sec-
tion VI.C. These results are then assumed to represent
horizontal averages over the region for which the ring
diagrams have been determined. By repeating this for
several regions on the solar surface, a map of the flow
and subsurface sound speed can be built up.

FIG. 22. Meridional flows in the solar convection zone, as
inferred from ring-diagram analysis, plotted against latitude
(abscissa) and depth beneath the solar surface (ordinate).
The length of the arrows indicate the speed, the scale be-
ing indicated at the lower left; grey regions mark southward
flow. The results in the lower panel were obtained in 1997, at
relatively low solar activity, whereas the upper panel is from
2001, close to solar maximum activity. (Adapted from Haber
et al., 2002.)

Detailed analyses have been carried out of the flows
in the solar convection zone by means of this technique.
Clear evidence has been found for meridional flows, which
tend to be poleward at periods of low solar activity (e.g.,
González Hernández et al., 1998b; Haber et al., 1998,

2000; Schou and Bogart, 1998; Basu, Antia, and Tripa-
thy, 1999). At higher activity, the situation appears to
be more complicated. Some recent results, from an ex-
tensive analysis of MDI data by Haber et al. (2002), are
illustrated in Fig. 22. In the lower panel, obtained near
solar minimum, there is a regular flow from the equator
towards the poles at all depths.35 In the upper panel,
however, obtained near solar maximum activity, the flows
in the Northern hemisphere are substantially more com-
plicated, a countercell with an equator-ward flow having
developed at depth at higher latitudes.

The ring-diagram analysis also allows separate deter-
mination of the rotation rate in the northern and south-
ern hemispheres. Haber et al. (2000, 2001) found zonal
flows converging towards the equator, similar to those
inferred from global helioseismic inversions (cf. Sec-
tion IX), although with a substantial North-South asym-
metry, as illustrated in Fig. 23. When symmetrized
around the equator, these results were in reasonable
agreement with those obtained from global inversions,
however.

FIG. 23. Longitudinally averaged zonal flows, obtained from
ring-diagram analysis. The dashed curves show results at
a depth of 0.9 Mm, and the solid curves are at a depth of
7 Mm. The results in the lower panel were obtained in 1997,
at relatively low solar activity, whereas the upper panel is
from 2001, close to solar maximum activity. This should be
compared to the zonal flows obtained from global analysis (cf.
Fig. 19); note that in the latter figure only the component
symmetrical around the equator is obtained. (Adapted from
Haber et al., 2001.)

Hindman et al. (2001) used ring diagrams to deter-
mine what essentially corresponds to the mean multiplet
frequency, as a function of position on the solar disk,
and in this way obtained local frequency shifts associ-
ated with active regions; when averaged over the solar
disk and time, the results are not inconsistent with the

35The slight North-South asymmetry may be due to a mod-
est misalignment of the orientation of the solar polar axis
which was assumed in the analysis.
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frequency changes observed for global modes over the so-
lar cycle (cf. Section IX). This may provide insight into
the physical origins of these frequency changes. A re-
lated theoretical investigation of frequency shifts caused
by localized strong magnetic fields, such as are present
in active regions, was carried out by Cunha et al. (1998).

B. Time-distance analysis and helioseismic holography

In geoseismology the most commonly used procedure
is to measure the travel time for waves between a known
source and a detector. The sources range from distant
earthquakes, in investigations of the global structure of
the Earth, to vibrators in measurements of local sub-
surface structures. The travel time provides an integral
of the wave speed along the path of the wave; many
such travel times can be combined to produce a coher-
ent model of the region under study. In this way it has
been possible to obtain a three-dimensional model of the
interior of the Earth (e.g., Dziewonski and Woodhouse,
1987).

In the solar case there are no similarly sharply de-
fined sources of the waves: as discussed in Section V.F,
the waves are continuously excited by the random effects
of the near-surface convection. Nevertheless, it was ar-
gued by Duvall et al. (1993b) that a similar signal could
be obtained from a suitable correlation analysis of the
wave field observed at the solar surface; the time delay
maximizing the correlation between two points provides
a measure of the travel time along the ray connecting
these two points. The technique was developed further
by D’Silva (1996) and D’Silva et al. (1996). Within the
approximation of geometrical acoustics the travel time
along the ray Γi can be written as

τi(t) =

∫

Γi

ds

cw(r, t) + v(r, t) · n , (83)

where s is distance along the ray, r is the spatial coor-
dinate, cw is the local wave speed, v is the local flow
velocity and n is a unit vector along the ray; the appear-
ance of time t indicates that both the wave speed and flow
velocity may depend on time. The wave speed is predom-
inantly given by the sound speed but may be perturbed
by magnetic fields in active regions. Given measurements
along a sufficient number of rays, these relations may be
inverted to infer cw(r, t) and v(r, t) (Kosovichev, 1996b).
Reviews of time-distance techniques were given by Koso-
vichev and Duvall (1997), and Kosovichev et al. (2000,
2001).

In practice, the correlation analysis is carried out be-
tween regions of the solar surface, typically a small cen-
tral area and a surrounding ring or parts of a ring. Also,
Eq. (83) assumes that the waves can be treated in the
ray approximation. It was noted by Bogdan (1997) that

this approximation is questionable in the solar case, since
the wavelength in general is not small compared to the
scale of the features that are investigated. Birch and
Kosovichev (2000, 2001) studied the effects of wave-speed
perturbations in the first Born approximation to derive
travel-time sensitivity kernels, relating the wave-speed
perturbation to the change in the travel time, as a re-
placement for the ray approximation. Jensen et al. (2000)
proposed simple analytical approximations to such ker-
nels and showed that they were in reasonable agreement
with sensitivity computations based on solutions to the
wave equation. These kernels were used for inversion to
infer wave-speed perturbations by Jensen et al. (2001),
who also determined averaging kernels reflecting the res-
olution properties of the inversion. Birch et al. (2001)
made a careful analysis of the accuracy of the Born and
ray approximations, by comparing them with direct cal-
culations of the scattering of acoustic waves in a uniform
medium. Finally, Jensen and Pijpers (2002) derived sen-
sitivity kernels for wave-speed perturbations and flow ve-
locity in the Rytov approximation, and compared various
approximations to these kernels. It is very encouraging
that the theoretical basis for the time-distance technique
is getting more solidly established through these analy-
ses; information transfer from similar work in geophysics
has been very fruitful in this regard.

Time-distance analyses have been used to investigate
the near-surface flow fields associated with supergranu-
lar convection (e.g., Kosovichev, 1996b). In an interest-
ing analysis based on f modes, Duvall and Gizon (2000)
evaluated the vertical vorticity associated with the flow
and showed that this was in agreement with theoretical
expectations for convection in a rotating system. Giles et
al. (1997) determined properties of the meridional flows
in the solar convection zone, from the equator towards
the poles, also seen with the ring-diagram analyses (cf.
Fig. 22). Inferences of meridional flows over an an ex-
tended range of depths within the convection zone were
reported by Duvall and Kosovichev (2001); interestingly,
no evidence was found for a return flow. Variations with
time in the meridional flow, inferred from time-distance
analysis, were discussed by Chou and Dai (2001). As in
the ring-diagram results, the flow showed increasing com-
plexity with increasing solar activity; however, as Chou
and Dai did not carry out an inversion in the radial di-
rection, a more detailed comparison of the results is not
possible.

Investigations have also been made of wave-speed per-
turbations associated with emerging active regions (e.g.,
Kosovichev et al., 2000; Jensen et al., 2001). An exam-
ple is shown in Fig. 24. It is evident that the emerging
magnetic field is associated with a complex structure of
generally increased wave speed below the solar surface.
Zhao et al. (2001) recently inferred the velocity field be-
neath a large sunspot; they found a strong mass flow
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across the spot at depth of 9–12 Mm, indicating that the
magnetic field responsible for the spot has a rather loose
structure at these depths.
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FIG. 24. Panel (a) shows an MDI magnetogram of an emerg-
ing active region; distances are in Mm, and the black and
white regions indicate magnetic fields of opposite polarity,
over a range between −0.1 and 0.1 Tesla. Panels (b) and
(c) show wave-speed perturbations below the surface, at the
cross section marked by ` and a in panel (a); the grey
scale ranges from perturbations of −0.2 km s−1 (white) to
0.5 km s−1 (black). Panel (c) was obtained at the same time
as the magnetogram in panel (a), while panel (b) was taken
16 hours earlier. (Adapted from Jensen et al., 2001.)

A technique closely related to time-distance helioseis-
mology is known as helioseismic holography. It goes back
to a proposal by Roddier (1975) to use holographic meth-
ods to visualize acoustic sources below the solar surface,
followed by a suggestion by Lindsey and Braun (1990)
that it might be possible to form an acoustic image of
sunspots on the back of the Sun.36 However, the first
practical application of the technique seems to have been
by Lindsey and Braun (1997) and the parallel develop-
ment of the so-called technique of acoustic imaging by
Chang et al. (1997). In these techniques, the acoustic
wave field on the solar surface is combined coherently,
taking into account the phase information, to reconstruct

36Peri and Libbrecht (1991) searched for, but failed to find,
a deficit of acoustic power at the antipodes of far-side active
regions.

the presence of acoustic absorbers or scatterers in the
subsurface layers. The methods have predominantly been
used to investigate the subsurface structure and acous-
tic properties of active regions (e.g., Chen et al., 1998;
Braun et al., 1998; Lindsey and Braun, 1998; Braun and
Lindsey, 2000). A tutorial review of helioseismic holog-
raphy was given by Lindsey and Braun (2000a), while
Chou (2000) reviewed the work done on acoustic imag-
ing. A technique for inversion of the holographic data
was presented by Skartlien (2002).

FIG. 25. Schematic illustration of the principle in imaging
active regions on the far side of the Sun. The figure shows the
propagation of waves in a cross section of the Sun, starting
from a focal point in an active region on the far side and
observed in the pupil on the near side. See text for details.
(Adapted from Lindsey and Braun, 2000b.)

The ability of the holographic analysis to detect ac-
tive regions on the far side of the Sun was convincingly
demonstrated by Lindsey and Braun (2000b), through
analysis of data from SOI/MDI. The principle is illus-
trated schematically in Fig. 25. Waves emerging from
the far side of the Sun can be measured on the near side,
in the region denoted ‘pupil’, after one or more reflec-
tions at the solar surface; through appropriate analysis
of the measured wave field it is possible to focus on spe-
cific regions on the far side. Relative to the neighboring
quiet photosphere waves from the active region suffer a
phase shift which can be detected. This is illustrated in
Fig. 26 where the phase shift (expressed as a change in
travel time) determined on the far side is compared to a
magnetogram of the same region after it has moved to the
near side of the Sun as a result of solar rotation. There is
clearly a striking agreement between the features in the
acoustic and direct image. Further developments of this
technique has allowed imaging of the entire far side of
the Sun, extending also to the region near the solar limb
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and over the poles (Braun and Lindsey 2001).
I finally mention that Woodard (2002) has developed

a new analysis method where the intermediate steps be-
tween data and inferences are to some extent bypassed,
hence approaching the ideal case presented in the in-
troduction to Section VI.B. Specifically, he obtained a
relation between inhomogeneity-induced correlations in
the observed wave field and the underlying supergranu-
lar flow. Results of analysis of data from the MDI in-
strument showed a very promising correlation with the
directly measured surface flow field. A detailed compar-
ison of this technique with other techniques of local he-
lioseismology, evaluating its advantages and possible dis-
advantages, still remains to be carried out, however.

FIG. 26. The leftmost two panels show travel-time perturba-
tions ∆t, in the vicinity of an active region on the far side of
the Sun. The right-hand panel shows a magnetogram of the
same region 10 days later, after the region has become visible
on the near side. The rule indicates angular distance on the
solar surface. (Adapted from Lindsey and Braun, 2000b.)

XI. THE HELIOSEISMIC SUN

It seems unlikely that even the most optimistic predic-
tions in the early phases of helioseismology, around 1975,
could have foreseen the extent to which the solar interior
can now be probed. Inferences of solar structure have
shown that standard calculations of solar models repro-
duce the actual structure to a precision better than 0.5 %
in sound speed. This is a remarkable demonstration of
the ability of physics, including our current understand-
ing of the microscopic properties of matter under stellar
conditions, to predict properties of such a relatively com-
plex object as the Sun. It also provides strong evidence
that the discrepancy between the predicted and measured
capture rates of neutrinos results from the properties of
the neutrinos, rather than from errors in the modeling
of the solar interior. Indeed, the strong constraints on
solar structure from helioseismology provide a basis for
using the solar core as a well-calibrated neutrino source
for the study of neutrino physics. The solar rotation rate
has been determined in much of the solar interior, re-
vealing striking variations with position, and changes in
time. Further, information is emerging about the flows
in the solar convection zone and the subsurface structure
of magnetically active regions.

These are remarkable achievements, in providing ob-
servational information about the internal properties of
a star. However, an important goal is now to under-
stand the results in physical terms, and evaluate their
broader consequences for the modeling of stellar struc-
ture and evolution, as well as their implications for our
understanding of physics of matter in stars.

Investigations of the thermodynamic properties in the
convection zone have shown that even the present com-
plex descriptions are inadequate, at the level of precision
reached by the helioseismic inferences; this demonstrates
the possibility of using the Sun as a laboratory for the
study of the equation of state of partially ionized matter,
in very great detail. Although the effects are subtle in the
solar case, they could have substantial importance under
other astrophysical circumstances, such as in lower-mass
stars or giant planets where the interactions between the
constituents of the plasma are much stronger.

The successes in overall solar modeling should not over-
shadow the failures: the differences between the inferred
solar sound speed and the predictions of the models are
far larger than the observational uncertainty. A particu-
larly striking feature is the localized region just below the
convection zone where the solar sound speed is substan-
tially higher than that of the models. This is a region
where the models predict a strong gradient in the hy-
drogen abundance, as a result of settling of helium from
the convection zone towards the interior. It also approx-
imately coincides with the tachocline, i.e., the transition
between the latitudinally varying rotation in the convec-
tion zone and the almost uniform rotation in the radia-
tive interior. It was suggested by Gough and McIntyre
(1998) that the uniform rotation of the interior is main-
tained by a weak magnetic field, the tachocline being es-
tablished as a boundary layer; within this region circula-
tion is established which leads to mixing.37 Mixing would
also result from the strongly anisotropic turbulence orig-
inally suggested by Spiegel and Zahn (1992) to explain
the tachocline. In either case, mixing of the region just
beneath the convection zone would tend to reduce the
composition gradients, locally increasing the hydrogen
abundance and hence the sound speed, as required by
the helioseismic results (Brun et al., 1999; Elliott and
Gough, 1999). Such smoothing of the gradient was also
suggested by the inversions, discussed in Section VII.B,
for the hydrogen abundance.

Independent evidence for mixing beneath the convec-
tion zone comes from the reduction in the solar pho-
tospheric lithium abundance, relative to the primordial
value (cf. Section III). Lithium is destroyed by nuclear

37Detailed numerical modeling of this mechanism has been
started by Garaud (2002).
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reactions at temperatures above 2.5×106 K, substantially
higher than the temperature at the base of the convection
zone. In fact, models with mixing have been computed
which match the lithium abundance, suppressing also the
peak in the sound-speed difference just below the con-
vection zone (e.g., Richard et al., 1996; Chaboyer, 1998;
Brun et al., 1999). On the other hand, the fact that
the photospheric beryllium abundance is close to the pri-
mordial value indicates that significant mixing does not
extend to temperatures as high as 3.5×106 K where beryl-
lium is destroyed.

The inferences of solar internal rotation show that the
rotation rate is almost constant in the radiative interior:
unlike simple models of the Sun’s rotational evolution
from an assumed state of rapid initial rotation, there is
no indication of a rapidly rotating core. An important
consequence is that the solar oblateness, which can be
calculated precisely from the inferred rotation rate, has
no significant effects on tests, based on planetary motion,
of Einstein’s theory of general relativity (e.g., Pijpers,
1998; Roxburgh, 2001). The nearly uniform rotation of
the radiative interior indicates the presence of efficient
transport of angular momentum, coupling the radiative
interior to the convection zone, from which angular-
momentum loss has taken place through the solar wind.
It was proposed by Kumar and Quataert (1997) and
Talon and Zahn (1998) that angular-momentum trans-
port might take place by means of gravity waves gen-
erated at the base of the solar convection zone. How-
ever, Gough and McIntyre (1998), with reference to anal-
ogous phenomena in the Earth’s atmosphere, argued that
gravity waves would be unlikely to have the required ef-
fect; they identified magnetic effects as the only plausible
transport mechanism, a weak primordial field being suf-
ficient to ensure the required coupling.

The variation of the rotation rate in the convec-
tion zone, reflected also in the latitude dependence ob-
served on the solar surface, is presumably maintained by
angular-momentum redistribution within the convection
zone, through interaction between rotation, convection
and possibly other flows. The observed variation is in-
consistent with relatively simple models which tend to
predict a rotation rate depending on the distance to the
rotation axis (cf. Section IV.C). It was pointed out by
Gough (1976) that the interaction between rotation and
small-scale convection might lead to an anisotropic tur-
bulent viscosity which could affect angular-momentum
transport; an estimate of the anisotropic Reynolds stress
tensor was made on the basis of three-dimensional hy-
drodynamical simulations by Pulkkinen et al. (1993). Pi-
datella et al. (1986) used simple models of this nature to
interpret early helioseismic inferences of rotation in the
convection zone. Recently, the numerical resolution in
full hydrodynamical simulations of the solar convection
zone has become sufficient to capture at least some as-

pects of the smaller-scale turbulence (e.g., Miesch, 2000;
Miesch et al., 2000; Brun and Toomre, 2002); the results
of these simulations show an encouraging similarity to
the helioseismically inferred rotation profile.

It is likely that interaction between convection and ro-
tation is responsible for the formation of the large-scale
solar magnetic field and its 22-year variation in the so-
lar magnetic cycle, through some kind of dynamo mech-
anism. Dynamo models have in fact been constructed
which are based on the helioseismically inferred rotation
rate (e.g., Parker, 1993; Charbonneau and MacGregor,
1997).

Analyses of data during the period leading to the
present maximum in solar activity have shown striking
variations in solar rotation. Zonal flows converging to-
wards the solar equator, previously detected in surface
observations, have been shown to extend over a sub-
stantial fraction of the convection zone. These bands
of somewhat faster and slower rotation appear to be re-
lated to the equator-ward drift of locations of sunspots
as the solar cycle progresses (e.g., Howard and LaBonte,
1980; Snodgrass, 1987; Ulrich, 1998, 2001); however, the
physical connection is as yet not understood. Even more
surprising has been the detection of oscillations with a
period of 1.3 y in the rotation rate near and below the
base of the convection zone; one may hope that they can
provide additional information about conditions in this
region and possibly about the mechanism of the solar dy-
namo. It is evident that such temporal variations provide
strong arguments for further detailed observations of so-
lar oscillations, ideally through at least one full 22-year
magnetic cycle.

Further information about the detailed structure and
dynamics of the convection zone has been obtained from
local helioseismology. Large-scale convective flow pat-
terns have been detected, as well as meridional flows
with complex structure that appears to depend on the
level of magnetic activity. This may lead to a detailed
understanding of the mechanisms controlling convection
and rotation, including the angular-momentum trans-
port, when the observations are combined with the in-
creasingly realistic modeling of the dynamics of the solar
convection zone. Also, detailed information is becoming
available about the subsurface structure and time evolu-
tion of active regions, which will likely lead to a better
understanding of the processes underlying their forma-
tion. Particularly interesting is the detection of active
regions on the far side of the Sun; by giving advance
warning before they reach the near side 1 – 2 weeks later
and hence have the potential to unleash eruptions in the
direction of the Earth, such observations may be helpful
in reducing the risk of harmful effects from such erup-
tions.

The causes of the solar oscillations are not central to
the use of the frequencies for helioseismic investigations,
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although the processes responsible for the excitation and
damping undoubtedly contribute to the frequency shifts,
suppressed in inverse analyses, which are induced by the
superficial layers of the Sun. The statistical properties
of the observed modes seem largely to be consistent with
stochastic excitation of damped oscillations, as discussed
in Section V.F (e.g., Chaplin et al., 1997; Chang and
Gough, 1998). Furthermore, Stein and Nordlund (1998b,
2001) showed that hydrodynamical simulations of solar
near-surface convection predicted the excitation of oscil-
lations, with an energy input approximately consistent
with the observations; a detailed comparison by Geor-
gobiani et al. (2000) between observations and hydro-
dynamical simulations of solar oscillations also showed
overall agreement, including indications of asymmetry.
On this basis, we can be reasonably confident that we
understand the overall aspects of the excitation of the
solar modes; thus it may be possible to use the observed
properties of the oscillations, including the statistics of
the amplitudes, to obtain information about convection
beneath the solar surface.

XII. PER ASPERA AD ASTRA

Although impressive advances have been made on the
helioseismic study of the solar interior, this provides in-
formation about only an individual, relatively simple
star. Complete testing of the theory of stellar structure
and evolution would require studies of the broad range of
stellar types, spanning very different physical properties
and processes, that are observed. These include effects,
such as rapid rotation or convective cores, that cannot be
investigated in the solar case. Fortunately, it has been
found that stars of very different types, covering most
stellar masses and evolutionary states, show pulsations;
often, these stars are multi-mode pulsators and hence in
principle offer relatively detailed information about their
interiors. For example, such stars include the γ Doradus
and δ Scuti stars, the slowly pulsating B stars and the β
Cephei stars, which span the main sequence from masses
of 1.5 to more than 10 solar masses, and various classes of
white dwarfs.38 Thus there would appear to be an excel-
lent potential for asteroseismology,39 probing the stellar
interiors on the basis of the observed frequencies.

38For extensive discussions of general stellar pulsations, see,
for example, Unno et al. (1989), as well as the proceedings
edited by Breger and Montgomery (2000) and Aerts et al.
(2002).

39This terminology has given rise to some discussion. Moti-
vated by Trimble (1995) who questioned the appropriateness
of the term, Gough (1996b) gave what in my view is its defini-
tive etymological justification.

In most cases, the oscillations are caused by intrinsic
driving resulting from various radiative or perhaps con-
vective mechanisms. Although modes may be unstable
in a substantial range of frequencies, the modes observed
are typically only a relatively small subset of the unstable
modes, and the selection of modes which reaches observ-
able amplitudes is complex and poorly understood. As a
result, it is difficult to identify the observed frequencies
with specific modes, characterized by their degree, radial
and azimuthal order; this has severely limited the possi-
bilities for using the modes for investigating the stellar
interiors.

In contrast, oscillations excited in a manner similar to
what is observed in the Sun are expected to show a broad
spectrum of observable modes, most modes in this range
being present since no subtle selections are at work in
the determination of the mode amplitudes. This makes
solar-like oscillations very attractive for asteroseismology.
Furthermore, the relation between stellar structure and
the oscillation frequencies is relatively well understood.
In the foreseeable future stellar observations will be re-
stricted to disk-averaged data, and hence to low-degree
modes;40 however, as discussed in Section V.C.3 these
are precisely the modes that give information about the
properties of stellar cores.

On the basis of our understanding of the source of the
solar oscillations (see Section XI), one may expect similar
oscillations in other stars with outer convection zones, al-
though the predictions of their amplitudes are still some-
what uncertain (e.g., Christensen-Dalsgaard and Frand-
sen, 1983; Houdek et al., 1999). However, in any case
the expected amplitudes in main-sequence stars is ex-
tremely low, as is also observed in the solar case: the
predicted velocity amplitudes are typically below 1 m s−1

and the relative luminosity amplitudes are below around
10 parts per million, severely stretching the capabilities of
ground-based observations faced with instrumental prob-
lems and fluctuations in the Earth’s atmosphere.41 Thus
it is hardly surprising that the observational results un-
til recently have been at best tentative. An extensive
co-ordinated campaign with most of the World’s then

40However, a space-based interferometric mission has been
considered which would allow resolution of modes on distant
stars with degrees as high as 50 (e.g., Carpenter and Schrijver,
2000). This would, for example, allow some resolution of the
structure and rotation near the base of the convection zone
in a star similar to the Sun.

41On the other hand, quite substantial amplitudes are pre-
dicted for red-giant stars. In fact, Christensen-Dalsgaard et
al. (2001) found evidence, based on observations by the Amer-
ican Association of Variable Star Observers, that semi-regular
variability in red giants might be caused by the same stochas-
tic mechanism that is responsible for the solar oscillations.
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largest telescopes (Gilliland et al., 1993) failed to find
oscillations in stars in the open cluster M67, in some
cases with upper limits below the theoretical predictions.
Promising results were obtained by Brown et al. (1991)
and Martić et al. (1999) for Procyon, again with ampli-
tudes somewhat below predictions. Detailed results for
the sub-giant η Bootis were obtained by Kjeldsen et al.
(1995); interestingly, modeling by Christensen-Dalsgaard
et al. (1995) and Guenther and Demarque (1996) showed
that there might be evidence for g-mode-like behavior in
the observed frequencies. However, it must be noted that
the observations were questioned by Brown et al. (1997).

FIG. 27. Power spectrum of oscillations of α Cen A, from
radial-velocity observations with the CORALIE fiber-fed
echelle spectrograph on the 1.2 m Swiss telescope at the
La Silla site of the European Southern Observatory. (From
Bouchy and Carrier, 2001.)

In the last few years the observational situation has
undergone a dramatic improvement. Interesting results
have been obtained from photometric observations with
the star tracker on the otherwise failed WIRE satellite
(e.g., Buzasi et al., 2000; Schou and Buzasi, 2001). Fur-
thermore, techniques have been developed for very sta-
ble radial-velocity measurements in connection with the
search for extra-solar planets. This has resulted in the
detection of evidence for solar-like oscillations in the star
β Hydri (Bedding et al., 2001); also, as shown in Fig. 27,
a very clear detection has been made in the ‘solar twin’
α Centauri A (Bouchy and Carrier, 2001).

Further developments are expected of ground-based
observing facilities, including the HARPS spectrograph
(Queloz et al., 2001) to be installed on the 3.6 m telescope
of the European Southern Observatory at La Silla. A ma-
jor breakthrough of asteroseismology of solar-like stars
will result from observations from space. The Canadian
MOST satellite (for Microvariability and Oscillations
of STars; Matthews 1998) will be launched late in
2002. The French COROT satellite (for COnvection,
ROtation and planetary Transits; Baglin et al. 1998,
2002) is scheduled for launch in 2004, and will obtain
very extended time series, with correspondingly high fre-
quency resolution, for a handful of stars. Two other
projects are under development. The Danish Rømer

satellite is being developed, with the MONS project (for
Measuring Oscillations in Nearby Stars; Christensen-
Dalsgaard 2002), with launch planned for 2005; this will
be in an orbit that allows access to stars in essentially
the entire sky. Finally, the Eddington mission (Favata,
2002) currently has the status as reserve mission in the
programme of the European Space Agency; it will carry
out precise measurements of oscillations of a large num-
ber of stars of a variety of types.

Data for distant stars will obviously never be as de-
tailed as those that have been obtained for the Sun; how-
ever, there is no doubt that asteroseismic investigations
of a broad range of stars, with very different properties,
will contribute greatly to our understanding of stellar
structure and evolution over the coming decades.
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“Phase-function differences for stellar acoustic oscillations
– I. Theory,” Mon. Not. R. Astron. Soc. 257, 62–88.

Christensen-Dalsgaard, J., C. R. Proffitt, and M. J. Thomp-
son, 1993, “Effects of diffusion on solar models and their
oscillation frequencies,” Astrophys. J. 403, L75–L78.

Christensen-Dalsgaard, J., and J. Schou, 1988, “Differential
rotation in the solar interior,” in Seismology of the Sun &
Sun-like Stars, ESA SP-286, edited by V. Domingo and E. J.
Rolfe (ESA Publications Division, Noordwijk, The Nether-
lands), p. 149–153.

Christensen-Dalsgaard, J., J. Schou, and M. J. Thompson,
1990, “A comparison of methods for inverting helioseismic
data,” Mon. Not. R. Astron. Soc. 242, 353–369.

Christensen-Dalsgaard, J., and M. J. Thompson, 1993, “A
preprocessing strategy for helioseismic inversions,” Astron.
Astrophys. 272, L1–L4.

49



Christensen-Dalsgaard, J., and M. J. Thompson, 1997, “On
solar p-mode frequency shifts caused by near-surface model
changes,” Mon. Not. R. Astron. Soc. 284, 527–540.

Claverie, A., G. R. Isaak, C. P. McLeod, H. B. van der Raay,
and T. Roca Cortes, 1979, “Solar structure from global stud-
ies of the 5-minute oscillation,” Nature (London) 282, 591–
594.

Cleveland, B. T., T. Daily, R. Davis, Jr., J. R. Distel, K.
Lande, C. K. Lee, P. S. Wildenhain, and J. Ullman, 1998,
“Measurement of the solar electron neutrino flux with the
Homestake chlorine detector,” Astrophys. J. 496, 505–526.

Corbard, T., G. Berthomieu, P. Morel, J. Provost, J. Schou,
and S. Tomczyk, 1997, “Solar internal rotation from LOWL
data. A 2D regularized least-squares inversion using B-
splines,” Astron. Astrophys. 324, 298–310.

Corbard, T., G. Berthomieu, J. Provost, and P. Morel, 1998a,
“Inferring the equatorial solar tachocline from frequency
splittings,” Astron. Astrophys. 330, 1149–1159.
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Cunha, M., M. Brüggen, and D. O. Gough, 1998, “On solar
frequency changes,” in Proceedings of the SOHO 6/GONG
98 Workshop: Structure and dynamics of the interior of the
Sun and Sun-like stars, ESA SP-418, edited by S. G. Korzen-
nik and A. Wilson (ESA Publications Division, Noordwijk,
The Netherlands), p. 905–910.

Cuypers, J., 1980, “On the calculation of the frequency split-
ting of adiabatic nonradial stellar oscillations by slow differ-
ential rotation,” Astron. Astrophys. 89, 207–208.
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Däppen, W., and D. O. Gough, 1986, “Progress report on
helium abundance determination,” in Seismology of the Sun
and the Distant Stars, edited by D. O. Gough (Reidel, Dor-
drecht), p. 275–280.
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Kosovichev, A. S. Brun, S. Couvidat, C. J. Henney, M.
Lazrek, R. K. Ulrich, and F. Varadi, 2001, “Low-degree low-
order solar p modes as seen by GOLF on board SOHO,”
Solar Phys. 200, 361–379.

Gavrin, V. N., 2001, “Solar neutrino results from SAGE,”
Nucl. Phys. B (Proc. Suppl) 91, 36–43.

Genovese, C. R., P. B. Stark, and M. J. Thompson, 1995,
“Uncertainties for two-dimensional models of solar rotation
from helioseismic eigenfrequency splitting,” Astrophys. J.
443, 843–854.

Georgobiani, D., A. G. Kosovichev, R. Nigam, Å. Nordlund,
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Turck-Chièze, S., 1999, “The solar neutrino puzzle: the way
ahead,” New Astronomy 4, 325–332.
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