pro nutate, jd, nut_long, nut_obliq ;+ ; NAME: ; NUTATE ; PURPOSE: ; Return the nutation in longitude and obliquity for a given Julian date ; ; CALLING SEQUENCE: ; NUTATE, jd, Nut_long, Nut_obliq ; ; INPUT: ; jd - Julian ephemeris date, scalar or vector, double precision ; OUTPUT: ; Nut_long - the nutation in longitude, same # of elements as jd ; Nut_obliq - nutation in latitude, same # of elements as jd ; ; EXAMPLE: ; (1) Find the nutation in longitude and obliquity 1987 on Apr 10 at Oh. ; This is example 22.a from Meeus ; IDL> jdcnv,1987,4,10,0,jul ; IDL> nutate, jul, nut_long, nut_obliq ; ==> nut_long = -3.788 nut_obliq = 9.443 ; ; (2) Plot the large-scale variation of the nutation in longitude ; during the 20th century ; ; IDL> yr = 1900 + indgen(100) ;Compute once a year ; IDL> jdcnv,yr,1,1,0,jul ;Find Julian date of first day of year ; IDL> nutate,jul, nut_long ;Nutation in longitude ; IDL> plot, yr, nut_long ; ; This plot will reveal the dominant (18.6 year) period, but a finer ; grid is needed to display the shorter periods in the nutation. ; METHOD: ; Uses the formula in Chapter 22 of ``Astronomical Algorithms'' by Jean ; Meeus (1998, 2nd ed.) which is based on the 1980 IAU Theory of Nutation ; and includes all terms larger than 0.0003". ; ; PROCEDURES CALLED: ; POLY() (from IDL User's Library) ; CIRRANGE, ISARRAY() (from IDL Astronomy Library) ; ; REVISION HISTORY: ; Written, W.Landsman (Goddard/HSTX) June 1996 ; Converted to IDL V5.0 W. Landsman September 1997 ; Corrected minor typos in values of d_lng W. Landsman December 2000 ; Updated typo in cdelt term December 2000 ;- On_error,2 if N_params() LT 2 then begin print,'Syntax - NUTATE, jd, nut_long, nut_obliq' return endif dtor = !DPI/180.0d ; form time in Julian centuries from 1900.0 t = (jd[*] - 2451545.0d)/36525.0d0 ; Mean elongation of the Moon coeff1 = [297.85036d, 445267.111480d, -0.0019142, 1.d/189474d0 ] d = poly(T, coeff1)*dtor cirrange,d,/rad ; Sun's mean anomaly coeff2 = [357.52772d, 35999.050340d, -0.0001603d, -1.d/3d5 ] M = poly(T,coeff2)*dtor cirrange, M,/rad ; Moon's mean anomaly coeff3 = [134.96298d, 477198.867398d, 0.0086972d, 1.0/5.625d4 ] Mprime = poly(T,coeff3)*dtor cirrange, Mprime,/rad ; Moon's argument of latitude coeff4 = [93.27191d, 483202.017538d, -0.0036825, -1.0d/3.27270d5 ] F = poly(T, coeff4 )*dtor cirrange, F,/RAD ; Longitude of the ascending node of the Moon's mean orbit on the ecliptic, ; measured from the mean equinox of the date coeff5 = [125.04452d, -1934.136261d, 0.0020708d, 1.d/4.5d5] omega = poly(T, coeff5)*dtor cirrange,omega,/RAD d_lng = [0,-2,0,0,0,0,-2,0,0,-2,-2,-2,0,2,0,2,0,0,-2,0,2,0,0,-2,0,-2,0,0,2,$ -2,0,-2,0,0,2,2,0,-2,0,2,2,-2,-2,2,2,0,-2,-2,0,-2,-2,0,-1,-2,1,0,0,-1,0,0, $ 2,0,2] m_lng = [0,0,0,0,1,0,1,0,0,-1,intarr(17),2,0,2,1,0,-1,0,0,0,1,1,-1,0, $ 0,0,0,0,0,-1,-1,0,0,0,1,0,0,1,0,0,0,-1,1,-1,-1,0,-1] mp_lng = [0,0,0,0,0,1,0,0,1,0,1,0,-1,0,1,-1,-1,1,2,-2,0,2,2,1,0,0,-1,0,-1, $ 0,0,1,0,2,-1,1,0,1,0,0,1,2,1,-2,0,1,0,0,2,2,0,1,1,0,0,1,-2,1,1,1,-1,3,0] f_lng = [0,2,2,0,0,0,2,2,2,2,0,2,2,0,0,2,0,2,0,2,2,2,0,2,2,2,2,0,0,2,0,0, $ 0,-2,2,2,2,0,2,2,0,2,2,0,0,0,2,0,2,0,2,-2,0,0,0,2,2,0,0,2,2,2,2] om_lng = [1,2,2,2,0,0,2,1,2,2,0,1,2,0,1,2,1,1,0,1,2,2,0,2,0,0,1,0,1,2,1, $ 1,1,0,1,2,2,0,2,1,0,2,1,1,1,0,1,1,1,1,1,0,0,0,0,0,2,0,0,2,2,2,2] sin_lng = [-171996, -13187, -2274, 2062, 1426, 712, -517, -386, -301, 217, $ -158, 129, 123, 63, 63, -59, -58, -51, 48, 46, -38, -31, 29, 29, 26, -22, $ 21, 17, 16, -16, -15, -13, -12, 11, -10, -8, 7, -7, -7, -7, $ 6,6,6,-6,-6,5,-5,-5,-5,4,4,4,-4,-4,-4,3,-3,-3,-3,-3,-3,-3,-3 ] sdelt = [-174.2, -1.6, -0.2, 0.2, -3.4, 0.1, 1.2, -0.4, 0, -0.5, 0, 0.1, $ 0,0,0.1, 0,-0.1,dblarr(10), -0.1, 0, 0.1, dblarr(33) ] cos_lng = [ 92025, 5736, 977, -895, 54, -7, 224, 200, 129, -95,0,-70,-53,0, $ -33, 26, 32, 27, 0, -24, 16,13,0,-12,0,0,-10,0,-8,7,9,7,6,0,5,3,-3,0,3,3,$ 0,-3,-3,3,3,0,3,3,3, intarr(14) ] cdelt = [8.9, -3.1, -0.5, 0.5, -0.1, 0.0, -0.6, 0.0, -0.1, 0.3, dblarr(53) ] ; Sum the periodic terms n = N_elements(jd) nut_long = dblarr(n) nut_obliq = dblarr(n) arg = d_lng#d + m_lng#m +mp_lng#mprime + f_lng#f +om_lng#omega sarg = sin(arg) carg = cos(arg) for i=0,n-1 do begin nut_long[i] = 0.0001d*total( (sdelt*t[i] + sin_lng)*sarg[*,i] ) nut_obliq[i] = 0.0001d*total( (cdelt*t[i] + cos_lng)*carg[*,i] ) end if not isarray(jd) then begin nut_long = nut_long[0] nut_obliq = nut_obliq[0] endif return end