pro minF_conj_grad, p_min, f_min, conv_factor, FUNC_NAME=func_name, $ TOLERANCE=tol, USE_DERIV=use, $ INITIALIZE=initialize, QUADRATIC=quad ;+ ; NAME: ; MINF_CONJ_GRAD ; PURPOSE: ; Find the local minimum of a scalar function using conjugate gradient ; EXPLANATION: ; Find the local minimum of a scalar function of several variables using ; the Conjugate Gradient method (Fletcher-Reeves-Polak-Ribiere algorithm). ; Function may be anything with computable partial derivatives. ; Each call to minF_conj_grad performs one iteration of algorithm, ; and returns an N-dim point closer to the local minimum of function. ; CALLING EXAMPLE: ; p_min = replicate( 1, N_dim ) ; minF_conj_grad, p_min, f_min, conv_factor, FUNC_NAME="name",/INITIALIZE ; ; while (conv_factor GT 0) do begin ; minF_conj_grad, p_min, f_min, conv_factor, FUNC_NAME="name" ; endwhile ; INPUTS: ; p_min = vector of independent variables, location of minimum point ; obtained from previous call to minF_conj_grad, (or first guess). ; KEYWORDS: ; FUNC_NAME = function name (string) ; Calling mechanism should be: F = func_name( px, gradient ) ; where: ; F = scalar value of function at px. ; px = vector of independent variables, input. ; gradient = vector of partial derivatives of the function ; with respect to independent variables, evaluated at px. ; This is an optional output parameter: ; gradient should not be calculated if parameter is not ; supplied in call (Unless you want to waste some time). ; /INIT must be specified on first call (whenever p_min is a guess), ; to initialize the iteration scheme of algorithm. ; /USE_DERIV causes the directional derivative of function to be used ; in the 1-D minimization part of algorithm ; (default is not to use directional derivative). ; TOLERANCE = desired accuracy of minimum location, default=sqrt(1.e-7). ; /QUADRATIC runs simpler version which works only for quadratic function. ; OUTPUTS: ; p_min = vector giving improved solution for location of minimum point. ; f_min = value of function at p_min. ; conv_factor = gives the current rate of convergence (change in value), ; iteration should be stopped when rate gets near zero. ; EXTERNAL CALLS: ; pro minF_bracket, to find 3 points which bracket the minimum in 1-D. ; pro minF_parabolic, to find minimum point in 1-D. ; pro minF_parabol_D, to find minimum point in 1-D, using derivatives. ; COMMON BLOCKS: ; common minf_conj_grad, grad_conj, grad_save, gs_norm ; (to keep conjugate gradient, gradient and norm from previous iteration) ; PROCEDURE: ; Algorithm adapted from Numerical Recipes, sec.10.6 (p.305). ; Conjugate gradient is computed from gradient, which then gives ; the best direction (in N-dim space) in which to proceed to find ; the minimum point. The function is then minimized along ; this direction of conjugate gradient (a 1-D minimization). ; The algorithm is repeated starting at the new point by calling again. ; MODIFICATION HISTORY: ; Written, Frank Varosi NASA/GSFC 1992. ; Converted to IDL V5.0 W. Landsman September 1997 ;- On_error,2 if N_params() LT 3 then begin print,'Syntax - minF_conj_grad, p_min, f_min, conv_factor, FUNC_NAME = print,' [ TOLERANCE=, USE_DERIV=, INITIALIZE= , QUADRATIC= ] return endif common minf_conj_grad, grad_conj, grad_save, gs_norm fp = call_function( func_name, p_min, gradient ) ;Compute conjugate gradient direction: if keyword_set( initialize ) then begin grad_conj = -gradient gs_norm = total( gradient * gradient ) if NOT keyword_set( quad ) then grad_save = gradient endif else begin grad_norm = total( gradient * gradient ) if (grad_norm EQ 0) then begin f_min = fp conv_factor = 0 return endif if keyword_set( quad ) then gamma = grad_norm/gs_norm else begin gamma = ( grad_norm - total( grad_save*gradient ) )/gs_norm grad_save = gradient endelse grad_conj = gamma * grad_conj - gradient gs_norm = grad_norm endelse ;Now find miminum along direction of conjugate gradient: xa = 0 xb = 1/sqrt( gs_norm ) minF_bracket, xa,xb,xc, fa,fb,fc, FUNC_NAME=func_name, POINT=p_min, $ DIRECTION=grad_conj if keyword_set( use ) then begin minF_parabol_D, xa,xb,xc, x_min, f_min, FUN=func_name, TOL=tol,$ POINT=p_min, DIRECTION=grad_conj endif else begin minF_parabolic, xa,xb,xc, x_min, f_min, FUN=func_name, TOL=tol,$ POINT=p_min, DIRECTION=grad_conj endelse conv_factor = 2*abs( f_min - fp )/( (abs(f_min) + abs(fp)) > 1.e-9 ) p_min = p_min + x_min * grad_conj return end