function filter_image, image, SMOOTH=width_smooth, ITERATE_SMOOTH=iterate, $ MEDIAN=width_median, ALL_PIXELS=all_pixels, $ FWHM_GAUSSIAN=fwhm, NO_FT_CONVOL=no_ft, PSF=psf ;+ ; NAME: ; FILTER_IMAGE ; ; PURPOSE: ; Identical to MEDIAN or SMOOTH but handle edges and allow iterations. ; EXPLANATION: ; Computes the average and/or median of pixels in moving box, ; replacing center pixel with the computed average and/or median, ; (using the IDL SMOOTH() or MEDIAN() functions). ; The main reason for using this function is the options to ; also process the pixels at edges and corners of image, and, ; to apply iterative smoothing simulating convolution with Gaussian, ; and/or to convolve image with a Gaussian kernel. ; ; CALLING SEQUENCE: ; Result = filter_image( image, SMOOTH=width, MEDIAN = width, /ALL_PIXELS ; /ITERATE, FWHM =, /NO_FT_CONVOL) ; ; INPUT: ; image = 2-D array (matrix) ; ; OPTIONAL INPUT KEYWORDS: ; SMOOTH = scalar (odd) integer specifying the width of a square box ; for moving average, in # pixels. /SMOOTH means use box ; width = 3 pixels for smoothing. ; ; MEDIAN = scalar (usually odd) integer specifying the width of square ; moving box for median filter, in # pixels. /MEDIAN means use ; box width = 3 pixels for median filter. ; ; /ALL_PIXELS causes the edges of image to be filtered as well. This ; is accomplished by reflecting pixels adjacent to edges outward ; (similar to the /EDGE_WRAP keyword in CONVOL). ; Note that this is a different algorithm from the /EDGE_TRUCATE ; keyword to SMOOTH or CONVOL, which duplicates the nearest pixel. ; ; /ITERATE means apply smooth(image,3) iteratively for a count of ; (box_width-1)/2 times (=radius), when box_width >= 5. ; This is equivalent to convolution with a Gaussian PSF ; of FWHM = 2 * sqrt( radius ) as radius gets large. ; Note that /ALL_PIXELS is automatically applied, ; giving better results in the iteration limit. ; (also, MEDIAN keyword is ignored when /ITER is specified). ; ; FWHM_GAUSSIAN = Full-width half-max of Gaussian to convolve with image. ; FWHM can be a single number (circular beam), ; or 2 numbers giving axes of elliptical beam. ; ; /NO_FT_CONVOL causes the convolution to be computed directly, ; with intrinsic IDL CONVOL function. The default is to use ; FFT when factors of size are all LE 13. Note that ; external function convolve.pro handles both cases) ; ; OPTIONAL INPUT/OUTPUT KEYWORD: ; PSF = Array containing the PSF used during the convolution. This ; keyword is only active if the FWHM_GAUSSIAN keyword is also ; specified. If PSF is undefined on input, then upon output it ; contains the Gaussian convolution specified by the FWHM_GAUSSIAN ; keyword. If the PSF array is defined on input then it is used ; as the convolution kernel, the value of the FWHM_GAUSSIAN keyword ; is ignored. Typically, on a first call set PSF to an undefined ; variable, which can be reused for subsequent calls to prevent ; recalculation of the Gaussian PSF. ; RESULT: ; Function returns the smoothed, median filtered, or convolved image. ; If both SMOOTH and MEDIAN are specified, median filter is applied first. ; ; EXAMPLES: ; To apply 3x3 moving median filter and ; then 3x3 moving average, both applied to all pixels: ; ; Result = filter_image( image, /SMOOTH, /MEDIAN, /ALL ) ; ; To iteratively apply 3x3 moving average filter for 4 = (9-1)/2 times, ; thus approximating convolution with Gaussian of FWHM = 2*sqrt(4) = 4 : ; ; Result = filter_image( image, SMOOTH=9, /ITER ) ; ; To convolve all pixels with Gaussian of FWHM = 3.7 x 5.2 pixels: ; ; Result = filter_image( image, FWHM=[3.7,5.2], /ALL ) ; ; EXTERNAL CALLS: ; function psf_gaussian ; function convolve ; pro factor ; function prime ;all these called only if FWHM is specified ; ; PROCEDURE: ; If both /ALL_PIXELS (or /ITERATE) keywords are set then ; create a larger image by reflecting the edges outward, then call the ; IDL MEDIAN() or SMOOTH() function on the larger image, and just return ; the central part (the original size image). ; ; NAN values are recognized during calls to MEDIAN() or SMOOTH(), but ; not for convolution with a Gaussian (FWHM keyword supplied). ; HISTORY: ; Written, 1991, Frank Varosi, NASA/GSFC. ; FV, 1992, added /ITERATE option. ; FV, 1993, added FWHM_GAUSSIAN= option. ; Converted to IDL V5.0 W. Landsman September 1997 ; Use /EVEN call to median, recognize NAN values in SMOOTH ; W. Landsman June 2001 ; Added PSF keyword, Bjorn Heijligers/WL, September 2001 ;- if N_params() LT 1 then begin print,'Syntax - Result = filter_image( image, SMOOTH=width, /ALL_PIXELS' print,' MEDIAN= width, ITERATE, FWHM=, /NO_FT_CONVOL' return, -1 endif sim = size( image ) Lx = sim[1]-1 Ly = sim[2]-1 if (sim[0] NE 2) OR (sim[4] LE 4) then begin message,"input must be an image (a matrix)",/INFO return,image endif if keyword_set( iterate ) then begin if N_elements( width_smooth ) NE 1 then return,image if (width_smooth LT 1) then return,image imf = image nit = (width_smooth>3)/2 for i=1,nit do imf = filter_image( imf, /SMOOTH, /ALL ) return,imf endif box_wid = 0 if keyword_set( width_smooth ) then box_wid = width_smooth > 3 if keyword_set( width_median ) then box_wid = (width_median > box_wid)>3 if keyword_set( fwhm ) then begin npix = ( 3 * fwhm[ 0: ( (N_elements( fwhm )-1) < 1 ) ] ) > 3 npix = 2 * fix( npix/2 ) + 1 ;make # pixels odd. box_wid = box_wid > max( [npix] ) endif if (box_wid LT 3) then return, image if keyword_set(all_pixels) then begin box_wid = fix( box_wid ) radius = (box_wid/2) > 1 Lxr = Lx+radius Lyr = Ly+radius rr = 2*radius imf = fltarr( sim[1]+rr, sim[2]+rr ) imf[radius,radius] = image ; reflect edges outward ; to make larger image. imf[ 0,0] = rotate( imf[radius:rr,*], 5 ) ;Left imf[Lxr,0] = rotate( imf[Lx:Lxr,*], 5 ) ;right imf[0, 0] = rotate( imf[*,radius:rr], 7 ) ;bottom imf[0,Lyr] = rotate( imf[*,Ly:Lyr], 7 ) ;top endif else begin radius=0 imf = image endelse if keyword_set( width_median ) then $ imf = median(/even, imf, width_median>3 ) if keyword_set( width_smooth ) then $ imf = smooth( imf, width_smooth>3, /NAN ) if keyword_set( fwhm ) then begin if N_elements( no_ft ) NE 1 then begin sim = size( imf ) factor,sim[1],pfx,nfx,/quiet factor,sim[2],pfy,nfy,/quiet no_ft = max( [pfx,pfy] ) GT 13 endif if N_elements(PSF) EQ 0 then $ psf=psf_gaussian( NP=npix,FWHM=fwhm,/NORM ) imf = convolve( imf, NO_FT=no_ft, psf) endif if radius GT 0 then $ return, imf[ radius:(Lx+radius), radius:(Ly+radius) ] $ else return, imf end