pro cosmo_param,Omega_m, Omega_Lambda, Omega_k, q0 ;+ ; NAME: ; COSMO_PARAM ; PURPOSE: ; Derive full set of cosmological density parameters from a partial set ; EXPLANATION: ; This procedure is called by LUMDIST and GALAGE to allow the user a choice ; in defining any two of four cosmological density parameters. ; ; Given any two of the four input parameters -- (1) the normalized matter ; density Omega_m (2) the normalized cosmolgical constant, Omega_lambda (2) the normalized ; curvature term, Omega_k and (4) the deceleration parameter q0 -- this ; program will derive the remaining two. Here "normalized" means divided by the closure ; density so that Omega_m + Omega_lambda + Omega_k = 1. For a more ; precise definition see Caroll, Press, & Turner (1992, ArAA, 30, 499). ; ; If less than two parameters are defined, this procedure sets default ; values of Omega_k=0 (flat space), Omega_lambda = 0.7, Omega_m = 0.3 ; and q0 = -0.5 ; CALLING SEQUENCE: ; COSMO_PARAM, Omega_m, Omega_lambda, Omega_k, q0 ; ; INPUT-OUTPUTS: ; Omega_M - normalized matter energy density, non-negative numeric scalar ; Omega_Lambda - Normalized cosmological constant, numeric scalar ; Omega_k - normalized curvature parmeter, numeric scalar. This is zero ; for a flat universe ; q0 - Deceleration parameter, numeric scalar = -R*(R'')/(R')^2 ; = 0.5*Omega_m - Omega_lambda ; NOTES: ; If more than two parameters are defined upon input (overspecification), ; then the first two defined parameters in the ordered list Omega_m, ; Omega_lambda, Omega_k, q0 are used to define the cosmology. ; EXAMPLE: ; Suppose one has Omega_m = 0.3, and Omega_k = 0.5 then to determine ; Omega_lambda and q0 ; ; IDL> cosmo_param, 0.3, omega_lambda, 0.5, q0 ; ; which will return omega_lambda = 0.2 and q0 = -2.45 ; REVISION HISTORY: ; W. Landsman Raytheon ITSS April 2000 ;- if N_params() LT 3 then begin print,'Syntax - COSMO_PARAM, Omega_m, Omega_lambda, Omega_k, q0' return endif Nk = n_elements(Omega_k) < 1 NLambda = N_elements(Omega_lambda) < 1 Nomega = N_elements(Omega_m) < 1 Nq0 = N_elements(q0) < 1 ; Check which two parameters are defined, and then determine the other two if (Nomega and Nlambda) then begin if Nk EQ 0 then Omega_k = 1 - omega_m - Omega_lambda if Nq0 EQ 0 then q0 = omega_m/2. - Omega_lambda endif if (Nomega and Nk) then begin if Nlambda EQ 0 then Omega_lambda = 1. -omega_m - Omega_k if Nq0 EQ 0 then q0 = -1 + Omega_k + 3*Omega_m/2 endif if (Nlambda and Nk) then begin if Nomega EQ 0 then omega_m = 1.-Omega_lambda - Omega_k if Nq0 EQ 0 then q0 = (1 - Omega_k - 3.*Omega_lambda)/2. endif if (Nomega and Nq0) then begin if Nk EQ 0 then Omega_k = 1 + q0 - 3*omega_m/2. if Nlambda EQ 0 then Omega_lambda = 1. - omega_m - Omega_k endif if (Nlambda and Nq0) then begin if Nk EQ 0 then Omega_k = 1 - 2*q0 - 3*Omega_lambda if Nomega EQ 0 then omega_m = 1.-Omega_lambda - Omega_k endif if (Nk and Nq0) then begin if Nomega EQ 0 then omega_m = (1 + q0 - Omega_k)*2/3. if Nlambda EQ 0 then Omega_lambda = 1. - omega_m - Omega_k endif ;Set default values if N_elements(Omega_k) EQ 0 then Omega_k = 0 ;Default is flat space if N_elements(Omega_lambda) EQ 0 then Omega_lambda = 0.7 if N_elements(omega_m) EQ 0 then omega_m = 1 - Omega_lambda if N_elements(q0) EQ 0 then q0 = (1 - Omega_k - 3*Omega_lambda)/2. return end