PRO co_nutate, jd, ra, dec, d_ra, d_dec, eps=eps, d_psi=d_psi, d_eps=d_eps ;+ ; NAME: ; CO_NUTATE: ; PURPOSE: ; Calculate changes in RA and Dec due to nutation of the Earth's rotation ; EXPLANATION: ; Calculates necessary changes to ra and dec due to ; the nutation of the Earth's rotation axis, as described in Meeus, Chap 23. ; Uses formulae from Astronomical Almanac, 1984, and does the calculations ; in equatorial rectangular coordinates to avoid singularities at the ; celestial poles. ; ; CALLING SEQUENCE: ; CO_NUTATE, jd, ra, dec, d_ra, d_dec, [EPS=, D_PSI =, D_EPS = ] ; INPUTS ; JD: Julian Date [scalar or vector] ; RA, DEC : Arrays (or scalars) of the ra and dec's of interest ; ; Note: if jd is a vector, ra and dec MUST be vectors of the same length. ; ; OUTPUTS: ; d_ra, d_dec: the corrections to ra and dec due to nutation (must then ; be added to ra and dec to get corrected values). ; OPTIONAL OUTPUT KEYWORDS: ; EPS: set this to a named variable that will contain the obliquity of the ; ecliptic. ; D_PSI: set this to a named variable that will contain the nutation in the ; longitude of the ecliptic ; D_EPS: set this to a named variable that will contain the nutation in the ; obliquity of the ecliptic ; EXAMPLE: ; (1) Example 23a in Meeus: On 2028 Nov 13.19 TD the mean position of Theta ; Persei is 2h 46m 11.331s 49d 20' 54.54". Determine the shift in ; position due to the Earth's nutation. ; ; IDL> jd = JULDAY(11,13,2028,.19*24) ;Get Julian date ; IDL> CO_NUTATE, jd,ten(2,46,11.331)*15.,ten(49,20,54.54),d_ra,d_dec ; ; ====> d_ra = 15.843" d_dec = 6.217" ; PROCEDURES USED: ; NUTATE ; REVISION HISTORY: ; Written Chris O'Dell, 2002 ; Vector call to NUTATE W. Landsman June 2002 ;- if N_Params() LT 4 then begin print,'Syntax - CO_NUTATE, jd, ra, dec, d_ra, d_dec, ' print,' Output keywords: [EPS=, D_PSI =, D_EPS = ]' return endif d2r = !dpi/180. d2as = !dpi/(180.d*3600.d) T = (jd -2451545.0)/36525.0 ; Julian centuries from J2000 of jd. ; must calculate obliquity of ecliptic nutate,jd,d_psi, d_eps eps0 = 23.4392911*3600.d - 46.8150*T - 0.00059*T^2 + 0.001813*T^3 eps = (eps0 + d_eps)/3600.*d2r ; true obliquity of the ecliptic in radians ;useful numbers ce = cos(eps) se = sin(eps) ; convert ra-dec to equatorial rectangular coordinates x = cos(ra*d2r) * cos(dec*d2r) y = sin(ra*d2r) * cos(dec*d2r) z = sin(dec*d2r) ; apply corrections to each rectangular coordinate x2 = x - (y*ce + z*se)*d_psi * d2as y2 = y + (x*ce*d_psi - z*d_eps) * d2as z2 = z + (x*se*d_psi + y*d_eps) * d2as ; convert back to equatorial spherical coordinates r = sqrt(x2^2 + y2^2 + z2^2) xyproj = sqrt(x2^2 + y2^2) ra2 = x2 * 0.d dec2= x2 * 0.d w1 = where( (xyproj eq 0) AND (z ne 0) ) w2 = where(xyproj ne 0) ; Calculate Ra and Dec in RADIANS (later convert to DEGREES) if w1[0] ne -1 then begin ; places where xyproj=0 (point at NCP or SCP) dec2[w1] = asin(z2[w1]/r[w1]) ra2[w1] = 0. endif if w2[0] ne -1 then begin ; places other than NCP or SCP ra2[w2] = atan(y2[w2],x2[w2]) dec2[w2] = asin(z2[w2]/r[w2]) endif ; convert to DEGREES ra2 = ra2 /d2r dec2 = dec2 /d2r w = where(ra2 LT 0.) if w[0] ne -1 then ra2[w] = ra2[w] + 360. ; Return changes in ra and dec in arcseconds d_ra = (ra2 - ra) * 3600. d_dec = (dec2 - dec) * 3600. END