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ABSTRACT

Subject headings: Earth : albedo, global climate — Moon: reflection

Since late 1998 sustained observations of the earthshine have been made from Big

Bear Solar Observatory in California. We also have intermittent observations from

1994-5. We have re-invigorated and modernized a nearly forgotten way of measuring

the earth’s albedo, and hence its energy balance. For about a quarter-century, early in

the last century, Danjon and his followers observed the earthshine from France. This

is the first in a series of papers covering observations and simulations of the earth’s

reflectance from photometric and spectral observations of the moon. Here, we develop

the modern method of measuring, instantaneously, the large scale reflectance of the

earth.

From California, we see the moon reflecting sunlight from the third of the earth to

the west of us in our evening – before midnight – which is during the moon’s rising

phase, and from the third of the earth to our east in our morning – after midnight –

which is during the moon’s declining phase.

We have precisely measured the scattering from the moon, as a function of lunar

phase, which enables us to measure, in a typical night’s observations, the earth’s

reflectance to an accuracy of 2.0% (equivalent to measuring the earth’s emission

temperature to ∼ 0.8 K). The albedo is due to the interplay of cloud cover and the

different landscapes.
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1. Introduction

It is important to know whether there is an on-going global change in the earth’s climate.

To answer this, one needs precise, global/integrated measures of relevant quantities. The earth’s

climate is driven by the net sunlight deposited in the terrestrial atmosphere, and so, is critically

sensitive to the solar irradiance and the earth’s albedo. Precise measurements of the solar

irradiance have been made by various satellites and using ground-based proxies (for a review, see

Fröhlich, 2000, and references therein). The spectrum of efforts to determine the earth’s global

albedo is not so rich. There have been efforts using systems of satellites (Buratti et al., 1997,

and references therein), but virtually no efforts from the ground. Nonetheless, the earth’s energy

balance is determined in large part by its global albedo – the fraction of the incident sunlight that

is directly reflected back into space without altering the internal energy budget of the atmosphere.

The earth’s surface, aerosols in the atmosphere, and clouds all reflect some of the incoming solar

short-wavelength radiation, preventing that energy from warming the planet. Short-wavelength

radiation, usually defined as having wavelengths between 0.15 and 4.0 µm, includes about 99% of

the sun’s radiation; of this energy, 46% is infrared (> 0.74 µm), 9% is ultraviolet (< 0.4 µm) and

the remaining 45% is visible, with wavelengths between 0.4 and 0.74 µm. A significant portion

of the solar energy is absorbed by the earth, where it drives terrestrial phenomena before being

radiated back into space. This long-wavelength radiation peaks at about 15 µm (corresponding to

the earth’s black-body temperature of about TE = 255 K).

The power going into the earth’s climate system is

Pin = CπR2
e(1−A), (1)

where C is the solar constant, Re is the earth’s radius and A is the short-wavelength Bond albedo

(reflectance). Similarly, the long-wavelength power that the earth radiates into space is

Pout = 4πR2
eσεT 4

e , (2)

where σ is the Stefan-Boltzmann constant and ε is the emissivity of the atmosphere (about 5.5 km
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high, where the long-wavelength radiation is emitted).

If the planet is in radiative equilibrium, Pin = Pout, and we have

T 4
e =

C

4σε
(1−A). (3)

This means that the Bond albedo directly controls the earth’s temperature. Global warming

would result if A and/or ε decreased. By measuring the earth’s reflectance and the spectrum of

the reflected light, one can determine A and ε, respectively.

It has been known for some time that the so-called solar constant varies. In particular, data

from the Active Cavity Radiometer (ACRIM I) on board the Solar Maximum Mission have shown

for one cycle (∼ 11 years) that the solar irradiance is about 0.1% greater at activity maximum

than activity minimum (Willson and Hudson 1988, 1991). The precise origin of the changing

irradiance is generally attributed to a competition between two components of the sun’s magnetic

field – dark sunspots and bright faculae, but an unambiguous description remains elusive. It is

conventional wisdom that a 0.1% change is about several times too small to be climatologically

significant over a solar cycle (Lean, 1997). It has been argued that there may have been two to

three times larger, sustained excursions (Lean, 1997) in the recent past, like during the little ice

age when a sunspot was rare. Still, there is strong evidence of a solar cycle going back more than

100,000 years (Ram and Stoltz, 1999). If the 0.1% increase in the mean solar irradiance between

the mid-1980s and 1990 were typical, then one is led to consider more carefully the possibility of a

variation in the earth’s albedo. After all, the earth’s reflectance is not so well-studied and seems

to show considerable variation, Goode et al. (2001).

One might have anticipated that global changes in the earth’s climate would be manifest in

changes in the earth’s albedo. Here, we focus on a terrestrial determination of the earth’s global

albedo from an old, and largely forgotten method. That is, global albedo can be determined by

measuring the amount of sunlight reflected from the earth and in turn, back to the earth from the

dark portion of the face of the moon (the “earthshine” or “ashen light”). The most important

historical program of earthshine measurements was carried out by Danjon (1928, 1954) from a
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number of sites in France. He used a “cat’s-eye” photometer to produce a double image of the

moon, allowing the visual comparison of the intensities of two well-defined patches of the lunar

surface−−one in sunlight and the other in the earthshine−−at various lunar phases. Using the

“cat’s-eye” mechanism, he stopped-down the light from the sunlit portion to match the brightness

of the ashen portion. This differential measurement removed many of the uncertainties associated

with varying atmospheric absorption and the solar constant, allowing Danjon to achieve his

estimated uncertainty of roughly 5%, ignoring his appreciable systematic error from an incorrect

determination of the moon’s reflectivity. Our measurements are about an order of magnitude more

precise than his estimates, not simply because we have better cameras available, but we have also

solved the problem of the uncertainty in the scattering from the moon as a function of the phase

of the moon (see §5). At a better than 1% precision, our terrestrial measurements of the earth’s

albedo have a precision comparable to that from satellites.

From 1926 to 1930, Danjon made 207 measurements of earthshine. Dubois (1947) continued

the program through 1960 from the observatory at Bordeaux using a Danjon-type photometer.

Danjon’s and Dubois’ results show a number of interesting features. The daily mean values

of the observations vary more widely than would be expected on the basis of the variation of

measurements on a single night. This can plausibly be attributed to daily changes in cloud cover,

but extensive cloud-cover data were not available at the time of the observations.

Danjon (1928) also examined his observations to determine whether there was a long-term

trend in albedo, but found none. Dubois’ observations for some 20 years ending in 1960, showed

considerable annual variability, which he speculated was due to solar activity. His published

monthly variations from 1940-1944 also show a strong correlation with the 1941-42 El Niño. In

the past forty years, there have been observations of earthshine by Huffman et al. (1989) and

one-time observations by Franklin (1967) and Kennedy (1969).

Danjon used his observations to estimate the mean global albedo. Since the observations

are only at visible wavelengths, they must be corrected for the balance of the short-wavelength

radiation, most of which is in the near IR. Estimates of this correction were made by Fritz (1949),
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after taking into account the decrease of the earth’s albedo with increasing wavelength (our “blue

planet”). Fritz also attempted to correct for the geographical bias in Danjon’s observations. The

western hemisphere, which was most frequently observed by Danjon, has a greater fraction of land

than does the globe as a whole, implying that Danjon’s value would be high because the sea is

dark compared to land. Combining the decreases from the absence of the IR and geographical

bias, Fritz found that Danjon’s visual albedo of 0.40 corresponds to a Bond albedo (considering

all the wavelengths and directions) of 0.36.

Flatte et al. (1991) noted that a correction must be made for the “opposition effect” present

in lunar reflectance properties. Observations of the moon show that the moon’s reflectivity has a

strong angular dependence. This “lunar phase function” can rise by as much as a factor of two in

going from 5◦ to 0◦ (exact backscattering). This enhancement was once thought to be due to

the porous nature of the lunar surface (Hapke, 1971), and was unknown in Danjon’s time. More

modern work has shown it to be caused by coherent backscatter in the lunar soil. The smallest

lunar phase angle measured by Danjon was only 11◦. The extent of the small-angle rise varies over

different regions of the lunar surface, but can easily be the 20% required to reduce Fritz’s value

of 0.36 to the generally recognized standard of about 0.30 (Buratti et al., 1997). In fact, we shall

see in that an incorrect lunar phase function is the primary source of Danjon’s overly large visual

albedo.

We have been steadily observing the earthshine from Big Bear since 1998 to determine the

earth’s reflectance and its variations. In this paper, we discuss in detail the method we used to

determine reflectance from earthshine. As mentioned, the first such observations were made by

Danjon (1928), and considerable modernization was required to make this method sufficiently

precise to usefully complement satellite measurements. Beyond developing the methodology, our

purpose here is to demonstrate the reliability of the technique. This is the first of a series of

papers deriving from our earthshine project. The next two papers will present and interpret the

results of our observational work and simulations of the observations. The fourth paper concerns

our observations of the spectrum of the earthshine from the 60” telescope on Mt. Palomar.
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2. Determining the Earth’s Reflectivity from Earthshine

Terrestrial measurements of the short-wavelength (visible light and near infrared) albedo of

a planet in our solar system is relatively straightforward – except for the earth. However, we can

determine the albedo from the ground by measuring the earthshine. From a terrestrial perspective,

the earthshine is the sunlight reflected from the day side of the earth to the moon, and finally

back to an observer on the night side of the earth. At any moment, the earthshine can provide an

instantaneous, differential cross-section of the sunlight reflected from the earth, see Figure 1.

The earth’s differential cross-section depends on its geometrical albedo and its phase function.

The geometrical albedo is independent of β, rather, it is proportional to the backscattered

cross-section. At the earth’s surface, the differential cross-section of the reflected sunlight for

scattering by an angle β (note that β is the supplement of the usual scattering angle) is given by

dσ

dΩ
≡ pefe(β)R2

e, (4)

where Re is the radius of the earth, pe is the geometrical albedo of the earth and fe(β) is the

earth’s phase function, defined such that fe(0) = 1, as can be seen in the Lambertian limit from

Equation (7).

Using Equation (4), we can write the total scattering cross section as

σ =
∫

dσ

dΩ
dΩ = πR2

epe

∫ π

−π
fe(β) | sin(β) | dβ, (5)

where pe and fe depend on the earth’s weather, season and climate. Additionally, fe depends on

the earth’s aspect.

From the total cross-section, we can define the Bond albedo – the fraction of solar energy

incident on the planet that is reflected as

A =
σ

πR2
e

= pe

∫ π

−π
fe(β) | sin(β) | dβ. (6)

Using earthshine data, we integrate over the phases of the moon to determine, say, a seasonally

averaged Bond albedo. β varies between 0 and ±π, with 0 to π being the waxing moon and -π to

0 being the waning moon.
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Fig. 1.— A not-to-scale cartoon of the sun-earth-moon system defining the earth’s topocentric

phase angle, α, with respect to BBSO. The plot also shows the moon’s selenographic phase angle,

θ, with respect to one of the fiducial points (Grimaldi) used in the observations made from BBSO

(also indicated). β is the angle between the sunlight that is incident somewhere on the earth and

reflected, as earthshine, to Grimaldi. θ0(= β − α) is the angle between the earthshine that is

incident, and reflected from the moon. The path of the earthshine is indicated by the arrows. θ0 is

of order 1◦, or less.
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If we assume that the earth is a Lambert sphere, we can do the integrals in Equations (5) and

(6) exactly. A Lambert sphere reflects isotropically from its assumed to be fully diffusive surface.

Then, fL, the earth’s Lambert phase function, is determined by

fL(β) =
(π− | β |) cos β + sin | β |

π
. (7)

The earth’s phase function is observed to be very roughly Lambertian for | β |≤ 2π
3 , Goode et

al. (2001). Under this assumption, we determine a simple proportionality between the geometric

albedo and the global or Bond albedo, namely,

pe,L =
2
3
AB,L. (8)

Modelling also shows that the earth’s phase function is approximately Lambertian for β ≤ 2π
3 .

Thus, a conveniently normalized, differential measure of the earth’s reflectivity is the effective

albedo, A∗, where

A∗ ≡ pefe

pe,Lfe,L
AB,L =

3
2

pefe

fL
, (9)

which is the albedo of a Lambert sphere that would give the same instantaneous reflectivity as

the true earth at the same phase angle, and where an unchanged A∗ as a function of phase angle

would imply a Lambertian earth.

An observer on the moon in the region illuminated by the sun and visible from the earth

would see both the direct sunlight and some part of the sunlit earth. The solar intensity seen by

that observer would be

Is =
C

R2
ms

, (10)

where C is the solar constant and Rms is the moon-sun distance measured in astronomical units.

Similarly, the intensity of the earthlight would be

Ie =
C

R2
es

pefe(β)
R2

e

R2
em

, (11)

where Rms and Res are the moon-sun and earth-sun distances, respectively. Thus, the earth’s

reflectivity can be expressed as

pefe(β) =
Ie

Is
[
Rem

Re
]2[

Res

Rms
]2. (12)
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In the observations, we study pairs of diametrically opposite fiducial patches, five in the

earthshine and the other five in the “moonshine” (sunlight reflected from the moon to the earth)

both near the night-time lunar limb. For our purposes here, we call a representative pair “a” and

“b” and treat them as unit projected areas. If a is illuminated only by the earthshine, the intensity

observed by an observer on the earth at a distance Roa would be

Ia = Ie
pafa(θ0)

R2
oa

Ta, (13)

where Ta is the transmission of the earthshine through the atmosphere, and fa(θ0) is the lunar

phase function for the near retroflection from patch a, see Figure 1. Thus, Ia/Ta is the observed

intensity corrected for airmass. Similar to Equation (13), the intensity of the sunlit portion, b,

would be

Ib = Is
pbfb(θ)

R2
ob

Tb, (14)

where θ is the lunar phase angle and θ, like α and β, varies between 0 and ±π, and where the

lunar phase function, fb(θ) embodies the dependence of the fiducial patch on the angle between

the sunshine and the moonshine, see Figure (1). Thus,

Ia/Ta

Ib/Tb
=

Ie

Is

pafa(θ0)
pbfb(θ)

R2
ob

R2
oa

, (15)

and so

pefe(β) =
Ia/Ta

Ib/Tb

pbfb(θ)
pafa(θ0)

[
Res

Re
]2[

Roa

Rob
]2[

Rem

Rms
]2. (16)

Since Ie
Is

is independent of lunar phase, Equation (16) is also independent of lunar reflectance

provided all quantities labelled by “a” are derived from the earthshine and all labelled “b”

come from moonshine. However, we ultimately take pa and fa(θ0) from moonshine data, which

introduces a dependence on the lunar reflectance. This small effect (the effect of 50 Å shift in the

spectrum is small compared to the spread among the pb
pa

), and we treat it as being subsumed into

that ratio, see §5.4. Also, [R0a
R0b

]2 is so close to unity that we can safely set that factor in Equation

(16) to unity. Thus, we determine that

pefe(β) =
Ia/Ta

Ib/Tb

pbfb(θ)
pafa(θ0)

[
Rem

Re
]2[

Res

Rms
]2. (17)
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We measure Ia and Ib in our nightly observations, and correct for airmass (e.g., Ia/Ta). We

have measured the lunar phase function quite accurately over the last two years. We use total

eclipse data from 93November 29 to measure the ratio of the geometrical cross-sections of the two

fiducial patches, pb
pa

. For our fiducial regions, this ratio ranges between 0.9 and 1.1. In §6, we

combine Equations (9) and (17) to define our measure of the earth’s reflectivity, A∗, in terms of

measured quantities, including the varying earth-moon distance.

3. Observations: Earthshine Instrumentation and Data Acquisition

Earthshine observations are currently being carried out at BBSO. The earthshine telescope

is aligned with, and mounted atop the 65 cm solar telescope. Figure 2 shows a schematic of the

earthshine telescope.

3.1. Hardware

The basic optical components of the earthshine telescope consist of an f/15 telescope primary,

which is a 6-inch diameter air-spaced doublet. The telescope tube is attached and aligned with

the 65 cm solar telescope, which enables us to use the large telescope’s drive software, permitting

tracking following the moon’s variable rate. The tracking rate is updated, via software, every

thirty minutes to match the changing lunar motion in the east-west direction. Minor north-south

corrections are done with the telescope control paddle as needed during the course of the night’s

observations. The moon is initially acquired using a simple two-lens finder scope aligned with the

other telescopes on the 65 cm main telescope. The 65 cm telescope is regularly re-balanced for

equipment changes so that tracking stability is not a problem even with long exposures. At the

end of the tube is a stray light field stop. The incoming moonlight passes the field stop, and then

enters a light-tight optical assembly box that holds the filters and camera optics.

In the box, just behind the tube field stop and just before prime focus, is the earthshine

neutral density filter switcher. Two filters are placed in the switcher. The first neutral density
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filter is a Schott NG3 2mm (the laboratory measured transmission of the filter, used for the first

two years of observations, is 0.0115, as a whole, from 4000-7000 Å) for the Bright Side (BS)

measurements. The BS or moonshine filter covers the entire field of view and is in place to prevent

camera saturation and to provide a reasonably long exposure time (several 100 ms) compared to

the smallest exposure time for the camera (10 ms). Thus, to determine the absolute value of the

earth’s reflectance, one needs to know precisely the transmission of this filter (§4.3). The second

filter is a Schott NG10 2mm (transmission is about 2× 10−5 over 4000-6000Å), which is essentially

a blocking filter to cut off the bright side of the moon to permit the dark side or earthshine (ES)

observations. The blocking filter covers the bright side of the moon to permit long, dark side

exposures (∼60-150 s) to get optimal signal to noise for the ES images. The blocking filter is

carefully placed within the filter holder, by hand, at the beginning of each observing session. Its

location, designed to cover the terminator, depends on the phase and libration of the moon. Both

filters were scanned to check transmission with wavelength at Gamma Scientific in San Diego

using a Radoma spectro-radiometer. Both of these two filters were found to be well within the

quoted Schott tolerances.

The prime focus is after the filter holder, and it is closely followed by a flat field lens. Next

in the optical train are two near IR filters, which stop any light beyond 7000 Å from reaching

the camera. An iris behind the near IR filters acts as a further stray light stop. Behind the iris

is a camera lens that focuses the lunar image on the CCD. Between this lens and the camera is

a space for a second filter wheel (not shown), which can be used for narrow band measurements.

All elements are rail mounted for linear adjustments, and lens elements are in moveable y − z

mountings for fine adjustments. All fine-tuning was done in the Fall of 1998, and nothing has

been changed on the system since the start of data acquisition in December 1998. The system

was “frozen” to limit possible errors in calibrating the lunar phase function. Flat field images

help to point out the location of occasional dust particles that get into the optics. Compressed

air removes most particles, and when necessary, elements are removed for cleaning, and then are

carefully replaced to preserve optical alignment.
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Fig. 2.— The optical set-up of the earthshine telescope.

The CCD camera used in our current earthshine observations is an Apogee 7. The camera is

a 512 X 512 16-bit scientific system with a SITe back-illuminated, thinned silicon chip. This chip,

which is one of SITe’s highest grade, is designed for higher quantum efficiency than unthinned

front illuminated chips – this advantage is most apparent toward the blue. One drawback of the

higher efficiency SITe chip is its sensitivity to “after-images” caused by exposure to UV. Testing

the earthshine system to limit this effect resulted in the following observing procedures: 1) The

UV from the BS images is reduced by the BS (NG3) filter. 2) The worst after-images show up

in the ES images on the unfiltered half of the image – which are of long exposure. It was found

that a a serier of subsequent, short BS images, the UV residual image was removed before the

next long earthshine exposure. 3) Careful examination of dark current and flat field images taken

during the course of observations is done to confirm this, night by night.

Initial testing demonstrated a linear response over the camera’s entire 16-bit range. To check

for change in the camera’s response with time, a calibrated radiometer was purchased to check

the camera’s response during each new moon. Dome flats are taken in varying illumination to get

pixel count versus intensity. The radiometer is an IL 1700, a NIST traceable Silicon photodiode
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radiometer. Once a year, the radiometer will be returned to International Light for re-calibration.

3.2. Observations

After initial tests, our current round of earthshine observations began in November 1998.

A typical raw image is shown in Figure 3. The five pairs of fiducial patches used in the data

reduction (see §4) are also indicated. The camera’s graphic user interface, in C code, was supplied

by the manufacturer, and it was modified to efficiently handle the routine earthshine observations.

The nightly observations follow a simple set of procedures, which are mostly automated. During

the course of observations BS, ES, dark current, and flat field images are taken regularly.

The first 8 months of observations covered lunar phases between 0◦ and ±140◦, which is about

21 days a month. The initial observation over this wide range of phases was necessary to determine

the lunar phase function and prove its repeatability. During the first 8 months, for the phases near

the full moon (-40◦ through 0◦ to +40◦), ES images were not taken because both fiducial patches

were in, or so near to sunlight that ES measurements were unreliable. On these nights only BS,

dark current, and flat fields, were taken to determine the scattering of light from the fiducial

patches as a function of the phase of the moon. The lunar phase function was determined by July

1999, so that the BS-only nights were dropped – except for observations of the full moon. Full

moon observations are still taken to determine the role of the opposition effect (Flatté et al. 1991)

in the lunar phase function (phases -15◦ to +15◦). Current earthshine observations cover about

14 days per month, and cover lunar phases between ±40◦ to ±150◦ centered on the first and last

quarters of the moon when we have optimal conditions for measuring the earthshine – close to

full-earth with a few hours of observations being possible. Data rates vary depending on phase.

An average night will give about 1 image per minute. This means that the number of raw images

saved for data reduction, varies between 100 to 600 per night.
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 2000 February 29 − Phase 116o

 Crisium

 Grimaldi x

x

Fig. 3.— The moon showing the bright side and the earthshine. The Grimaldi side is in the

moonshine and the Crisium side is in the earthshine. Our ten fiducial patches used in the

observations made from BBSO are indicated. The crosses give the approximate positions of

Danjon’s fiducial patches. Goode et al. (2001) used one fiducial patch on each side, and on

the Crisium side it is the one closest to the white cross, while on the Grimaldi side, it is the

one immediately above the black cross. In the image, the lunar phase is 115◦.9, near a declining

quarter moon. Unlike the moonshine, the earthshine is flat across the disk. The flatness is due to

the uniform, incoherent back-scattering (non-Lambertian).
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4. Data Reduction

4.1. Image Analysis

The earthshine and moonshine intensities are measured by integrating the brightness of a

pair of fiducial patches – one from the bright side and the other from the dark side of the lunar

disk. In our study, ten physically fixed fiducial patches have been used with five in the earthshine

and five in the moonshine, see Figure 3. In selenographic (lunar) coordinates, the center latitudes

and longitudes of the five patches on the Crisium side are (-17.5, -70.), (-11.2, -71.5), (-5., -76.),

(0., -75.), and (7.5, -76.5), and those of the five patches on the Grimaldi side are (28.5, 72.5),

(12.5, 75), (0., 77.), (-7.5, 75.), and (-13., 75.). Each patch covers a longitudinal range of about

10 degrees and latitudinal range of 3 to 5 degrees, the surface area being about 0.1% of the

lunar surface, which corresponds to about 100 camera pixels. These patches are located in the

“highlands” of the lunar surface, and the physical reflectivity of each is roughly comparable. One

of the patches on the Grimaldi side is very close to Danjon’s choice, while the patches on the

Crisium side are all closer to the limb than Danjon’s patch (Figure 3).

To locate these patches in each lunar disk image taken every night, it is essential to establish

the transformation between the CCD image coordinate system and the selenographic coordinate

system. For this purpose, we first define the limb and center of the lunar disk for each image.

Each of the raw lunar images is contrast-enhanced, and the limb points are defined by looking for

suitable positions of large intensity gradient. Empirically, a minimum of 40 rim points need to be

obtained, and are then used to make a fitting to decide the lunar center in the image plane. Once

the lunar center and limb are determined, the radius of the lunar disk is calculated in the CCD’s

coordinate frame. The next step is to define the position of the lunar pole in the image plane.

To this end, some outstanding lunar features, whose precise selenographic coordinates are known,

are used to co-register the two coordinate systems. The topocentric location of the lunar pole at

any given moment can be precisely calculated using parameters from an astronomical almanac,

from which one can determine the projected positions of these lunar features in the image plane,
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Fig. 4.— Illustration of the background subtraction for earthshine images. The image on the left

shows a background cone around a fiducial patch, within which the intensity of the background

points are read out to make a fit as a linear function of the distance from the lunar center. For

the image shown, the intensity inside the cone has the background subtracted already. The plot

on the right shows the decline of the off-limb intensity as the background point gets further from

the lunar center, and the overplotted thick grey line indicates the least-square linear fit.

which is perpendicular to the vector pointing from the local observer to the lunar center. By

comparing these projected positions with the positions of these features in CCD coordinates, the

angle between the projected N-S axis of the moon and the Y-axis of the CCD coordinate system

is derived.

Once the transformation between the image plane and the selenographic system is established,

the five pairs of fiducial patches can be precisely located on the lunar disk image. The apparent

areas of these patches change from night to night because of lunar libration. The intensity is

read out as an average of the whole area, and the difference due to the geometric effect of the

reflectivity arising from libration, is accounted for in our next step of data reduction (§4.2).
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To ensure accurate photometry, flatfielding and dark current subtraction are performed on

each image. For earthshine images, we also need to subtract the background scattering from the

bright side of the moon. The background scattering should be a function of both the inclination of

the vector connecting the lunar center and the background point with respect to the lunar equator,

and the distance from the background point to the crescent. After experimentation, we found

that we could safely assume that on the earthshine side, where the background points are not

too close to the crescent, at a fixed inclination with respect to the lunar equator, the background

intensity falls off linearly with the distance of the background point to the lunar center. Such

a linear relation holds for the points which are not too far from the lunar equator. So, for each

fiducial patch centered on the vector connecting the lunar center and the patch, we open a small

cone with an angular size 5◦, and fit the intensities of the background points, which are beyond

the lunar limb and inside the cone, as a function of their distance to the lunar center. In this

way, we can extrapolate the scattering intensity to the position of the fiducial patch using the

parameters obtained from the least-square fit, and then subtract the linearly extrapolated value

from the intensity of the fiducial patch. This procedure is illustrated in Figure 4.

In accordance with Equation (17), the intensity obtained from above is also corrected by

scaling to a set of standard distances between the sun, moon and earth, before the successive steps

of calibration described in subsequent subsections. Precise distance parameters are obtained from

an ephemeris.

4.2. Atmospheric Extinction

To eliminate the effect of the atmospheric extinction, observations are carried out for as long

as possible during the night so that a measurement of the intensity at varying airmass can be

obtained. For the bright side of the moon, we expect the variation of the intensity to follow Beer’s

law:
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Fig. 5.— Each panel indicates either the moonshine (top panel of each triptych), the crescent

(middle panel of each triptych), or the earthshine (bottom panel of each triptych) intensity plotted

against time (on the left) and airmass (on the right). The “+” indicates observed data points and

the solid lines are the fits to Beer’s law. Upper six panels: data from the night of September 5,

1999, demonstrating a typical good night, and the standard deviation of the fitting is 0.007, 0.005,

0.007 (from top to bottom). Lower six: data from the night of September 17, 1999, demonstrating

a typical, partly cloudy night, and the standard deviation of the fitting is 0.219, 0.183, 0.077 (from

top to bottom).
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Fig. 6.— The moonshine, crescent and earthshine intensities and their Beer’s law fit for the night

of 2000 January 28, showing that while the moonshine and crescent intensity follows Beer’s law

very well, the earthshine intensity evolution deviates from Beer’s law. The standard deviations of

the fits are 0.004, 0.005, 0.014, respectively. The fact that the fit is only poor for the earthshine

implies sizeable short-term variations in the earth’s reflectance.
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Fig. 7.— The variation of the atmospheric extinction coefficients for the crescent, (αc), moonshine

(αm) and earthshine (αe). Panel (a) illustrates αm (for five fiducial patches as indicated by different

symbols) against αc; (b) shows αm of four out of five fiducial patches (as indicated by different

symbols) vs. the fifth fiducial patch, illustrating that αm is virtually the same for different patches

(note the equivalence of each linear, least squares fits to the data for each patch); (c) shows αe for

four out of five fiducial patches (as indicated by different symbols) vs. the other fiducial patch,

showing that αe is also the same for different fiducial patches in the earthshine; and (d) shows αe

(of all fiducial patches in earthshine) against αc. The various straight lines in each panel indicates

a least squares fit to the appropriate data.
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I = I0e
(−αz), (18)

where I is the observed intensity, α is the atmospheric extinction coefficient, z is the local airmass

and I0 is the intensity at zero airmass – the intensity if the earth had no atmosphere.

The airmass, z, is determined from the angular altitude of the moon in the sky at different

times in such a way that when the co-latitude θc - the inclination of the observer’s line of sight

with respect to the local zenith, which is the complement of the moon’s angular altitude - is

smaller than 60◦, z = 1./ cos(θc); otherwise z is interpolated from a standard airmass table (Table

1):

The above calculation refers to the airmass at sea level with the pressure p0 = 760 mmHg

and temperature t0 = 10◦C, and the real airmass at the observer’s location must be corrected by

a multiplicative factor of p/p0/(0.962 + 0.0038t) (C. W. Allen, 1973, Astrophysical Quantities,

p.125). BBSO is 2067m above sea level, and the pressure scale height at this altitude is 8200m,

which yields p = p0 exp(−2067./8200.). We then incorporate the calculated z into the Beer’s

law fitting to determine α and I0. We reckon that throughout a night, the evolving lunar phase

function can also contribute to the changing intensity. The maximum phase change in a long night

is less than two degrees, within which the intensity change is negligible compared to the change

due to the airmass. Nevertheless, we employ a quasi-iterative way to correct this minor effect, in

that we use an initial fit of the phase function (see the following section on how to obtain the

phase function) to correct the data, and after the airmass correction, we make the phase function

Table 1: Standard Airmass Table (θc in degrees)

θc 60. 62. 64. 66. 68. 70. 72. 74. 76. 78. 80.

z 2.00 2.12 2.27 2.45 2.65 2.90 3.21 3.59 4.07 4.72 5.60

θc 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. -

z 6.18 6.88 7.77 8.90 10.39 12.44 15.36 19.79 26.96 40.00 -
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fit again. After a few iterations, the data converge to a stable result. The observed intensity at

each moment, Ii, is corrected, using the airmass, to the intensity at zero airmass, I0
i = Ii exp(αz).

I0 from the fitting is further used as the intensity for that night’s lunar phase function.

The goodness of the fit to Beer’s law offers a ready criterion by which each night’s local sky

can be judged – the “good” night’s data can be separated from that of the “bad” (noisy) night’s

(Figure 5). In practice, unless it is cloudy the data from almost all observable nights are preserved,

and the standard error in the fitting for each night is further used as the input error for the lunar

phase function fit. Figure 5 shows an example of a typical good night and a bad night, as judged

by fitting to Beer’s law. Experience from the observations shows that the data usually follow

Beer’s law quite well, and the accuracy of the moonshine fitting is often better than 1%.Among

all the datasets collected for 340 nights from November 28, 1998 to March 31, 2002, the accuracy

of the fitting is better than 1% for 110 nights, and the accuracy is between 1% and 2% for 139

nights, and between 2% and 3% for 52 nights.

In the case of earthshine intensity, apart from the atmospheric transmission, the evolution

of the earthshine is also influenced by changing of the earth during a given night; e.g., the sun

rising over a cloudy China. In addition, almost every month, on a few nights, we observe that

the evolution pattern of the earthshine intensity does not track Beer’s law in an unambiguous

way, even though the moonshine intensity closely follows Beer’s law. An example of such a case

is shown in Figure 6. In general, the fit to the earthshine yields a standard deviation that is

larger than that for the moonshine fitting by one-half to one percent. This latter difference

contains the signal of the earth’s albedo. On such nights when the evolution of the earthshine

is significantly controlled by real changes in the earth’s reflectance, apart from the atmospheric

extinction, as illustrated Figure 6c, the atmospheric absorption coefficient α obtained from the

Beer’s law fitting of the earthshine observations may deviate from the true value. That is, some

part of the earthshine signal may be subsumed into the atmospheric extinction, and vice versa, so

that the correct atmospheric attenuation cannot be properly determined from the standard Beer’s

law fitting.
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To deal with this problem, we investigated the relationship between the earthshine coefficients,

αe, and the moonshine coefficients, αm. As a reference, we have also examined αm for different

αe, and the moonshine coefficients, αm; we have also examined αm for different fiducial patches

and αc, the fitting parameter for the integral intensity of the whole crescent. Figure 7 (a) and

(b) show the relationship between αc and the αi
m(i = 1, 2, 3, 4, 5) for all five fiducial patches.

Least-square fits reveal that the αi
m (i = 1, 2, 3, 4, 5) can be regarded as being identical to one

another, and to αc. This is not a surprise even though, as it is well known, the atmospheric

attenuation is also a function of the wavelength, as the light from a moonshine fiducial patch

should have the same spectrum as the light from the whole bright side. Similarly, the earthshine

absorption coefficient, αe, is linearly correlated with αc (Figure 7 (d)), but the absolute value

of αe is systematically larger than that of αc, indicating a stronger atmospheric attenuation in

earthshine than in moonshine. This is because the earthshine and the moonshine have different

spectra; specifically, the earthshine is bluer than the moonshine because the bluer the light the

more effectively the earth’s atmosphere scatters it away.

The solution to fitting nights like those shown in Figure 6 lies in exploiting the linear scaling

law that we find between αe and αc, which enables us to make a better determination of αe

from αc for the nights when the usual, local airmass changes leading to a good Beer’s law fit

for the moonshine are compounded by sharp earthshine variations such that the mixture yields

observational data that deviates sufficiently from Beer’s law, so that one cannot be confident of

the fit obtained in the usual way. Our solution lies in using αc to fix αe for the problematic nights,

beginning with

αe = a× αc + b, (19)

where the scaling parameters a and b are obtained by a linear least-square fit of the above relation

using αe and αc from the nights that do not show apparent global evolution that strays strongly

from the Beer’s law fit. We reckon that for the nights of significant global change, the standard

deviation of the Beer’s law fitting of the earthshine (σe) must be a lot larger than that of the

crescent (σc), given that the local atmosphere is reasonably stable throughout a single night. For
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Table 2: αe against αc

q a b σ σa σb

1.0 1.1886 -0.0073 0.0099 0.0183 0.0023

1.2 1.1830 -0.0061 0.0128 0.0170 0.0023

1.5 1.1813 -0.0051 0.0132 0.0172 0.0023

1.8 1.1881 -0.0050 0.0140 0.0171 0.0023

2.0 1.2281 -0.0095 0.0167 0.0169 0.0023

2.5 1.2222 -0.0124 0.0164 0.0161 0.0022

this reason, we make a further assumption that when σe is less than a cutoff value q times σc, i.e.,

σe < qσc, we regard the global change as not being significant during this night, and αe from the

Beer’s fitting for this night is reliable. Only then do we use these nights to make the fit in order

to determine a and b.

In Table 2, we list the fitting results, a, b, σ (the standard deviation of the fit), σa and σb (the

fitting errors of a and b respectively) for various cutoff values, q = 1.0, 1.2, 1.5, 2.0, 2.5.

We can see from Table 2 that for q < 2.0, the fitting results are consistent with each other.

In general, the absolute value of αe is larger than that of αc by more than 0.01, or about 10%.

That is, using αc ∼ 0.1 and Table 2, we have αe ∼ 1.2 × αc − 0.01 ∼ 0.11. Note that we do not

distinguish among the αe from different fiducial patches, because there is no reason for us to

believe that the αi
e should be different from one another (also see Figure 7c). As a matter of fact,

we have tried to scale αi
e to αc separately, and the resulting fitting parameters a and b do not differ

for different patches. In the subsequent analysis, we employ the scaling parameters at q = 1.2 in

Equation (19) to obtain αe from αc for nights when σe > 1.2σc. Then, we use αe to fit out the

atmospheric attenuation, so that we can determine the true earthshine signal. After applying this

correction, a direct result is that while the average of the [A*] is not altered, for some nights their

appreciable, original deviations from the average, at comparable lunar phase, is greatly reduced.
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For those same nights the calculated αe yields a slightly poorer fit to the data than would a direct

fitting to Beer’s law. The price of this latter fitting was to force some of the earthshine signal into

the atmospheric extinction coefficient, yielding an erroneous extrapolation to zero airmass.

4.3. Measuring the Transmission of the Bright Side Filter

A precise determination of the earth’s reflectance from observing the moon depends on an

accurate measurement of the ratio of the true earthshine intensity to the true moonshine intensity.

This determination is complicated by the fact that the moonshine is so bright that when we

measure it, we must use a filter (see Figure 3) that reduces the intensity of the moonshine by

about 99%. The reduction enables us to have a reasonably long exposure time (of order a few 100

ms) compared to the shortest possible exposure time of the camera (10 ms). When we observe

the earthshine, the moonshine or BS filter flips out and the much stronger, blocking filter flips in

to block the moonshine to prevent camera blooming during the much longer exposures. Thus, to

know the true ratio of the earthshine to moonshine intensity, we must also precisely determine the

transmission of the moonshine filter at the point through which the moonlight passes. This fact

became abundantly clear after October 13, 2000 when the original filter was destroyed, and was

replaced by one that was comparable in the lab specifications for the transmission over the whole

filter. Initially, we assumed that the transmission of the new filter was the same as the old one.

However, we found that the observed moonshine intensity noticeably increased indicating that the

new filter has a significantly larger transmission than the old filter.

In the observations, the moonshine filter, MS, is placed at a fixed position in the focal plane

covering the entire lunar image, so that the light always passes through the same point on the filter.

This is important because there is some point-to-point variation in the transmission of the filter.

In our effort to precisely determine the transmissions of the old and new BS filters at the focal

point of the lunar image, we first employed identical approaches for both of the filters. To measure

the transmission of the old filter, we re-analyzed thirty nights of moonshine and earthshine data

that we had in-hand for nights near the new moon - where the earthshine signal is most intense.
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Fig. 8.— Image of the earthshine on the night of February 1, 2000 shown is one with the blocking

filter, which enables long exposures of the earthshine. The bright, rectangular patch indicates the

area of five strips used to compare the earthshine intensity with and without the moonshine filter

(BS filter), so as to determine the transmission of the BS filter. The lunar phase was +134◦ that

night, and so the earthshine signal is relatively strong. The crescent is not visible through the

strong blocking filter in the original image, but has been restored here for reference.
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Fig. 9.— The upper panel shows the observed, BS filter-blocked earthshine intensity as a function

of airmass on February 1, 2000. The “+” signs in that panel represent the intensity of one of the

stripes. The linear fit to the data has been extrapolated to zero airmass with that result being

indicated by the asterisk, which is the left-most mark on the fit. The lower panel shows the same

type of data, but without the BS filter. The ratio of the two intensities, for that night, extrapolated

to zero airmass, and corrected for the small effect of stray light, implies a MS filter transmission of

0.0114±0.0005. The lunar phase that night was +134◦.
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To illustrate the re-analysis procedure, one can look at Figure 8 for guidance. For that night, with

the old filter, we measured the total earthshine intensity in five parallel strips, somewhat wider

than the fiducial patches and running from the earthshine fiducial points toward the moonshine

crescent. In that figure, the five strips are shown together as a striped, bright four-cornered patch.

Each strip in the bright patch runs from the edge of the moon and is 5◦ wide in latitude and 30◦

long in longitude. That way, each strip would have a statistically significant number of counts in

the earthshine region, even for the relatively short exposure times of a few hundred milliseconds,

used on that, and other nights, for each data point with the BS filter in place (but without the

much stronger blocking filter in place). The lunar phase in Figure 8 is +134◦. Large magnitude

phase angles are chosen so that the earthshine is the brightest, while the stray light the smallest.

The determination of the transmission of the old BS filter is shown for that typical night in Figure

9. The dark side of the moonshine and the earthshine intensities are each extrapolated to zero

airmass, and corrected for the small effect of stray light, (as described in §4.1), and their ratio

yields a transmission of 0.0114±0.005 for that night. The error weighted mean transmission for all

thirty nights is 0.01127±0.00011 for the old filter. Implicit in this approach to determining the

broadband transmission of the filter is the assumption that the spectrum of the earthshine and

moonshine are roughly the same; this assumption works here because the transmission curve is

flat over visible wavelengths. Most of the noise in the result arises from the short exposure time

for the MS filter covered observations. The 0.01127±0.00011 is within the factory quoted errors of

the 0.0115 value given by Schott.

For the new filter, we have re-analyzed twelve nights of data in the same way and find a

transmission of 0.01338±0.00017 for the focal point, whereas the factory reported the average

across the filter is 0.0114. The latter transmission is nearly identical to that of the old filter,

but quite far from 0.01338±0.00017. The larger transmission at the focal point accounts for the

apparent rise in moonshine intensity after October 13, 2000. We will continue collecting more

data on the transmission using future data. However, we have a more powerful and more precise

cross-check in hand – using lunar phase function data on the crescent and moonshine, which we

know to 0.5%.
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Analyzing all of our good nights of moonshine observations, with the new and old new filter,

at all phases, we have constructed for each a lunar phase function – the change in brightness with

lunar phase for the moonshine and crescent intensities. From all these nights, we have selected the

nights during the period for which the old filter was used, and then we calculated a second-degree

polynomial fit to the lunar phase data. The data for these nights have been reduced using a

transmission value of 0.01127. After that, we analyze the phase function for the nights taken with

the new filter and calculate the standard deviation of the values to the lunar phase function fit to

the old data, but leave the new filter transmission as a variable.

Our procedures consist of multiplying the intensities of the new phase function data by a

factor between 0.9 to 1.4 in steps of 0.0001, and for each case calculating the standard deviation

to the old data fit. The agreement of the new data with the fit to the old data will be optimal

when the standard deviation is minimized.

We find the best agreement between the two lunar phase functions when the transmission of

the new filter is 0.0132 (0.01319 for the moonshine and 0.01322 for the crescent). This is excellent

agreement with the transmission determined from the first method. Thus, we have precisely

determined the transmission of the new filter to the same precision as the old filter, so that we

use 0.0132±0.0001 as its transmission after including errors in the phase function. As we gather

more data on the new filter, we can determine its transmission to the same precision to which we

know the lunar phase function, and then the error on the transmission can be reduced to about

±0.00005. Following that, we can use this information to reduce the quoted precision of the old

filter to that for the lunar phase function determined for the old filter.

5. The Lunar Phase Function

The lunar phase function is defined as the normalized change in the moonshine intensity as

a function of lunar phase, which represents the geometric reflectance of the moon. It is measured

from the readout intensity of each of the fixed fiducial patches (five on the Crisium side and five



– 31 –

on the Grimaldi side) used throughout the observations, after carrying out several straightforward

corrections to the raw scattering data. When the raw, observed intensity readout is plotted against

the lunar phase for all nights, the data are quite scattered around a different means for each

branch, as illustrated in Figure 10 for the Crisium and Grimaldi pair used in Goode et al. (2001).

This figure, and that pair, are treated in detail in this section. The raw results for all pairs take

the same form as the chosen pair. On the face of it, the large scattering in Figure 10 would seem

to prelude a precise determination of the earth’s albedo from measuring the earthshine. However,

most of the scattering is due to known physical effects for which one can systematically account,

and then remove.

The first factor is the night-to-night change of the local atmosphere, apart from the nightly

atmosphere attenuation which follows Beer’s law. Such a change affects the measured crescent

as a whole, and moonshine and earthshine from the fiducial patches in precisely the same way,

and hence, the raw phase function by can be corrected by treating the crescent as a standard star

(see §5.1). This correction does not alter the determination of A∗, because the correction applies

to both the earthshine and moonshine, while A∗ is given by the ratio of the earthshine to the

moonshine. The second factor is the sun’s position, namely the declination and right ascension,

due to the changing angle of the sunlight into the earth-moon system at the same lunar phase, but

in different synodic months. To first order, we fit out the alteration of the scattering introduced

into the phase function. (see §5.2). Since it affects the moonshine and earthshine intensities in the

same way, again A∗ is insensitive to the change. The third known source of the scatter in Figure

10 is the moon’s libration, which changes the observed intensity from the moonshine fiducial

patches, but does not affect the earthshine intensity (see Figure 3 in which the non-uniformity of

the moonshine near the limb is apparent, but there is no such non-uniformity in the earthshine).

To first order, we model this effect as a linear function of the libration and correct it for both the

phase function and in the moonshine intensity Ib, when using Ib to calculate A∗ (see §5.3). The

results of these corrections are developed in this section, one step at a time. We shall see that we

can determine the lunar phase function to 0.5%, which gives us real confidence that observing the

earthshine can yield a precise reflectance for the earth.
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Fig. 10.— The intensity of the moonshine for the Crisium side and Grimaldi side fiducial patches of

Goode et al. (2001) with a third order polynomial (including higher order terms has no noticeable

effect) fit for each. Clearly, there is a roughly linear decrease in the intensity of the reflected light

going from full moon to new moon.

In the last part of this section (§5.4), we normalize the overall lunar phase function to connect

the right and left branches of the lunar phase function by treating the opposition surge that

occurs at small phase angles. The data here are from the fullest of full moons and the one total

lunar eclipse we observed in Big Bear. The total eclipse enables us to determine the ratio of the

geometrical albedos of the opposing pairs of fiducial patches.

5.1. Atmospheric Correction

The nightly fits of the moonshine intensity to Beer’s law are quite good, and so the

extrapolation to zero airmass would seem quite reliable. However, there is an appreciable change

in our lunar phase function (see Figure 10), for the same phase, from month-to-month. As we shall

see, the prime cause of this is that, even after extrapolation to zero airmass, the resultant intensity

is subject to changes in the local atmospheric conditions. It seems that the local atmosphere is not
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a uniform plane, parallel gas, but rather we have something more like a canopy superposed on a

plane parallel atmosphere. The canopy mutes the intensity by the same amount for all airmasses,

and therefore its effect remains after extrapolation. Because of this, there is a deviation in the

intensity measured from the same fiducial patch at the same lunar phase, but on different nights

(that is, successive lunar cycles). To solve this problem, we employed the common practice of

nighttime observers doing absolute photometry who use standard stars to account for the muting.

We have found that the crescent of the moon is our best standard “star”. That is, we correct from

night-to-night variations using the correlation between the change of the moonshine intensity and

the crescent intensity.

In the extrapolation to zero airmass, we use a fifth degree weighted polynomial fit for both the

fiducial patch intensity and the average crescent intensity over the area of the bright portion as the

way to determine the average of the intensity at each lunar phase. In removing the canopy effect,

we give double weight to nights for which the lunar phase is less than ±5◦. We do this because

of the pronounced opposition effect that gives a sharp increase in the moonshine intensity when

lunar phase approaches zero degrees (see §5.4). The deviation of the measured intensity at each

data point from the fitting curve for the lunar phase function, in both the moonshine case and

the crescent case are obtained, and the cross correlation between these deviations is calculated.

For the morning observations, for which the lunar phase is positive, we get a cross correlation of

0.73, and for the evening when the lunar phase is negative, we obtain a quite similar value of 0.77

(Figure 11). The relative correlations are determined from a simple least-square linear fit between

the moonshine deviation and crescent deviation using

Ii − Īi

Īi
= a0 × Ci − C̄i

C̄i
+ b0 + σi, (20)

where Ii is the observed fiducial patch intensity, Ci is the crescent intensity, Īi and C̄i are the

average fiducial patch intensity and crescent intensity, respectively, at the same lunar phase, and

σi is the scatter about the linear least-squares fit. Note that throughout this section Īi is the

final, fitted intensity, which is derived by iterating the steps described in §5.1-5.3. The coefficients

a0 and b0 are derived from the least square fitting of Equation (20). From Figure 11, it is clear
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Evening Observations (168 nights)
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Fig. 11.— The deviation of the moonshine fiducial patch intensity from average against the

deviation of the overall intensity of the crescent. Left: data points from morning observations

of Grimaldi; right: data points from evening observations of Crisium. The solid lines in each panel

show the linear fit to each cluster of points.

that a0 is close to unity (morning/Grimali:0.81±0.08 and evening/Crisium:0.74±0.07), while the

respective b0’s are essentially zero – 0.002 and 0.001 – more than two orders of magnitude smaller

than a0. Therefore, we determine the correct, relative zero airmass intensity, I ′i, by removing the

canopy effect by subtracting the linear term in Equation (20) from the earthshine data, i.e.,

I ′i = Ii − a0 × Īi × Ci − C̄i

C̄i
. (21)

The scattering among the datapoints is much reduced after this correction. This correction is of

comparable significance for the evening data (lunar phase < 0) and the morning data (lunar phase

> 0), as the comparable cross-correlations imply.

5.2. Declination Correction

The second step in correcting the deficiencies in the apparent lunar phase function is to

remove variations arising from the systematic change of relative position of the moon to the plane
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of the earth’s orbit about the sun. The difference in right ascension between the sun and the moon

(hereafter, the “relative right ascension”) changes from 180 to -180◦, which essentially determines

the lunar phase, defined as the angle from between the moon-earth line and the sun-moon line, see

Figure 1. However, there is a clear ambiguity in the lunar phase angle that makes the apparent

lunar phase function multi-valued. In detail, the difference in the declination between the sun

and the moon (hereafter “relative declination”) changes as well, since the orbital plane of the

moon around earth is inclined to that of the earth around the sun. Toward the full moon, the

relative declination also becomes important in determining the lunar phase. Then, at the same

lunar phase, but on different nights (that is, different months), the position of the moon may be

different, and this difference alters the readout intensity of the fiducial patches. To correct for

this effect, for a given lunar phase near the full moon, we choose a standard position of the moon

and normalize the readout intensity of different positions to this standard position. The standard

position is the one for which the relative declination is zero, i.e., the moon is in the plane of

ecliptic, and the lunar phase is equal to the relative right ascension, i.e., a total lunar eclipse. The

normalization is made as follows:

Ii − Īi = a1(Pi − Pi,RA) + b1Di + c1 + σi, (22)

where Ii is the observed intensity, Īi is the average intensity at the same lunar phase as Ii (from

the ultimately determined lunar phase function), (Pi − Pi,RA) is the difference between the lunar

phase and the relative right ascension, Di is the relative declination, and a1, b1, and c1 are

fitting parameters, which are determined from the least square fitting using all the observed

intensities. The fitted parameters, a1 (morning/Grimaldi: -0.003±0.002 and evening/Crisium:

3.4e-5±7.0e-5), b1 (morning/Grimaldi: -0.4.7e-5±0.0002 and evening/Crisium: 0.0007±0.0002)

and c1 (morning/Grimaldi: 0.009±0.008 and evening/Crisium: 0.009±0.009) are all quite small.

The normalized intensity, I ′i, is derived by removing the relative right ascension and declination:

I ′i = Ii − [a1(Pi − Pi,RA) + b1Di]. (23)

The c1 term is regarded as part of the errors (σi).
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Morning Observations (152 nights)
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Fig. 12.— The deviation of the moonshine fiducial patch intensity (after the first and second step

corrections) from average against the deviation as a fitting result from Equation (24). Left: data

points from morning observations; right: data points from evening observations.

This correction is only made for lunar phase between -15 and +15 degree since the effect of

the relative position of the moon is only important around the full moon. However, after this

correction, the modest improvement reveals barely apparent changes in the data points.

5.3. Libration Correction

The third step in rectifying the apparent lunar phase function requires removing the effects

of latitudinal and longitudinal lunar libration. Since the orbit of the moon around the earth is not

in the equatorial plane of the moon, a terrestrial observer alternatively sees the north pole and

south pole of the moon during each orbit. This is the latitudinal libration. Further, the slightly

elliptical orbit of the moon has the consequence that the moon moves more slowly at apogee than

at perigee, and therefore is seen to be wobbling around its axis of rotation. This is longitudinal

libration. An additional, very small dynamical libration arises because the moon is prolate, and

its pointing wanders. The dynamical libration adds to both the latitudinal and longitudinal
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librations. These librations allow us to see about 60% of the moon’s surface. As a result of both

kinds of libration, for different cycles of the lunar orbit, even at the same lunar phase, we would

expect changes in the positions of the fiducial patches on the lunar disk. The readout intensity

thus changes as a function of the geometric position of the fiducial patches on the lunar disk. The

longitudinal and latitudinal librations cause the apparent lunar phase function to be multi-valued.

To first order, we derived a description of the deviation of the observed intensity from the averaged

intensity as a linear function of the longitudinal and latitudinal librations, which goes as:

Ii − Īi = a2L
α
i + b2L

β
i + c2 + σi, (24)

where the Ii − Īi are the deviations of each night from the mean, and where Lα
i is the longitudinal

libration and Lβ
i is the latitudinal libration. Here, Lα

i and Lβ
i really measure the position of the

lunar pole in the sky with respect to its mean position, so that all the kinds of libration are

taken into account. From a least squares fit, we obtain the coefficients a2 (morning/Grimaldi:

0.0019±0.0004 and evening/Crisium: -0.0018±0.0004) and b2 (morning/Grimaldi: 4.2e-5±0.0003

and evening/Crisium: -0.0003±0.0004), while c2 is 1-2 orders of magnitude smaller than a2. Since

the magnitude of the a2’s are about an order of magnitude greater than the b2’s, the longitudinal

libration is more significant than the latitudinal libration. Figure 12 shows the result of fit, and,

in particular, that the fit describes the data, in that it can be seen that the observed scattering

at this step is mainly accounted for by the libration. For the determination of Figure 12, we used

152 mornings and 168 evenings, and the correlation between the fit and the data is 0.44/0.52

respectively. Using the parameters from the fit, we then normalize the intensities at all lunar

phases to the case of zero libration with the equation:

I ′i = Ii − (a2L
α
i + b2L

β
i ). (25)

To check the validity of the libration correction, we performed the libration correction again

– but doing it before performing the atmospheric correction described in §5.1. We next performed

the atmospheric correction (which still dominates) and the declination correction. At that point,

we performed the libration correction again, and we found that Ii − Īi does not have a significant
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correlation with the libration. In particular, the parameters from the linear fit of Equation (24)

are reduced by an order of magnitude. This test not only confirms the validity of the libration

correction performed above, but also guarantees that the three-step corrections can be performed

in any order. However, it remains for us to determine the lunar phase function for small phase

angles.

5.4. Opposition Effect

To this point, the lunar phase function is incomplete because it is not normalized, and we

have not determined its functional form for the smallest phase angles. To do these, we need to

know the phase function for small phase angles, and that means that the final lunar phase function

for each fiducial patch needs to be normalized to the full moon opposition peak. In reality, the

moon is not observable at zero lunar phase because the shadow of the earth would occult the

moon, as the earth’s shadow occupies about ±0.8◦. So far, the smallest phase we have reached is

±1.0◦ on the night of November 29, 1993, when a total lunar eclipse occurred over Big Bear. On

that night, the sky was clear and stable throughout, and observations were made both before and

after the total eclipse, covering lunar phase angles of magnitude ranging between about 1◦ and 2◦,

which offers a unique dataset to investigate the slope of the opposition surge effect for all fiducial

patches on both the Grimaldi and the Crisium sides.

The images taken during the eclipse were processed and the intensities of the fiducial patches

were read out as described in Section 4.1. The atmospheric attenuation has to be corrected

to obtain the real moonshine intensity. However, throughout the night, the evolution of the

moonshine intensity was controlled not solely by the changing airmass, but also by the changing

phase angle. This latter effect is appreciable because of the strong opposition effect at small lunar

phase angles. As a result, the shape of the intensity evolution for the two patches deviates strongly

from Beer’s law (see Figure 13a and c). Thus, Equation (18) can no longer produce a reasonable

fit.
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Fig. 13.— Fit of lunar eclipse data obtained on November 29, 1993. (a) Beer’s law fit of the

Crisium side (Equation 18); (b) Composite Beer’s law plus opposition effect fit on the Crisium side

(Equation 26); (c) same as (a) on the Grimaldi side; (d) same as (b) on the Grimaldi side.
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We developed a simple solution to this problem under the reasonable assumption that the

opposition effect is linear for very small phase angles, say, from 0 to 5◦. During the eclipse,

the phase angle changes by less than two degrees for either the Crisium branch or the Grimaldi

branch. To determine the slope of the opposition peak for each of the ten fiducial patches, we

represent the observed intensity by:

Ii = I0 × (1− γ|Pi|)× e−αzi , (26)

where Ii is the observed intensity at phase angle |Pi| (in degrees) and airmass zi. In contrast to

Equation (18), I0 describes the intensity at both zero airmass and zero phase angle. The second

term on the right side describes the linear increase of the phase function as the lunar phase goes

to zero. The last term describes the exponential atmospheric attenuation, i.e., Beer’s law, where

α is the atmospheric absorption coefficient for the moonshine.

In applying Equation (26), we used the observed Ii, after correcting for libration (see §5.3),

at lunar phase Pi and airmass zi in Equation (26) above, and made a least-squares, non-linear

fit to obtain α, I0, and the linear opposition effect coefficient, γ. The fit was made for all ten

fiducial patches. We did not correct for the declination because the moon is in total eclipse, and

that correction should be quite small. We collected about 40 data points for the fit on each side

of the moon, i.e., before and after totality, and the standard deviation of the final fit is at the

level of 0.5%. Figure 13b and d reveal the improvement in fitting results for one pair of fiducial

patches using Equation (26) instead of Equation (18). The improvement is typical of that for all

ten patches. From Figure 13, it is also clear that Equation (26) accurately describes the composite

effect of the opposition surge and Beer’s law. The fitted opposition peak slope parameter, γ, was

Table 3: Opposition Effect γ’s, see Equation (26)

Patch 1 2 3 4 5

Grimaldi side 0.084 0.078 0.083 0.079 0.083

Crisium side 0.086 0.079 0.076 0.083 0.083
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then used to normalize the phase function for each of the fiducial patches. Figure 14 shows an

example of the final lunar phase function normalized to the opposition peak. Of course, each

fiducial patch has its own lunar phase function. In detail, for lunar phase of 5◦ in Figure 14, we

used the slope, γ, determined for very small angles to extrapolate to the intensity at zero lunar

phase from that at 5◦, i.e., I(0) = I(5)
1−γ×5 . Then, we normalized that branch of the phase function,

its γ and I(0)=1 to fix I(5). Combining our knowledge of I(5) with the relative phase function

indicated by the +’s in Figure 14, we obtained the right branch of that figure. The normalization

removes the ratio of the geometrical albedos between the two patches, which is restored in

Equation (27). The eclipse does not give us data for lunar phases between ±(2◦-5◦), where we

have also assumed a linear form for the phase function. Nights at these small phase angles occur

at the fullest of full moons, and we have a few of them. We will enrich our data in this region as

time goes on, and can further sharpen our phase function. If there were a systematic error here,

it would shift all of our Bond albedos by the same amount. We expect such a systematic error is

actually quite small, but we would be able to re-calibrate our present results in the light of future

data.

In Table 3, we list the values of the derived opposition coefficients, γ, for all ten fiducial

patches. The value of γ for all fiducial patches is approximately 0.08 per degree, indicating that

when lunar phase changes from six degrees to zero degrees (full moon), the intensity doubles. This

Table 4: pa

pb
(Crisium Side/Grimaldi Side)

Patch 1 2 3 4 5

6 1.121 1.130 1.141 1.086 1.109

7 1.041 1.050 1.060 1.009 1.030

8 0.919 0.926 0.935 0.890 0.909

9 0.983 0.991 1.001 0.953 0.972

10 0.989 0.996 1.006 0.958 0.978
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Fig. 14.— The top panel show the apparent, relative lunar phase function from the raw data, for

which there are points down to 2◦. The function is made relative by normalizing it to unity at

phase angle 0◦, which means that the ratio of the true right and left branch intensities yields the

ratio of the geometrical albedos between Crisium and Grimaldi. The peak near small phase angles

represents the opposition effect. Data from a total eclipse are used to connect the positive and

negative phase branches of the lunar phase function. No eclipse data are shown in this figure, but

the result of the eclipse data is the opposition peak. The second panel from the top shows the

result after including correction for the local atmospheric effects using the lunar crescent as a guide

star. The third panel also includes the correction for lunar declination. The fourth panel includes

the correction for lunar libration. The fit shown in each panel is the final one resulting from all of

the corrections described in §5.
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is the well-known opposition surge which had not been quantitatively determined previously. The

formal error in the determination of γ is about 0.5%.

The parameter I0 is also used to obtain the ratio of the earthshine patch reflectivity to the

moonshine patch reflectivity pa/pb. Table 4 gives the ratios determined between each of the five

Crisium patch reflectivities to the each of Grimaldi patch reflectivity.

In Figure 14, we show the lunar phase function with final fit in the lowest panel. The same

fit is shown in the other three panels, as well. The points in the top panel represent a normalized

version of Figure 10. The second panel shows the result after correction for local atmospheric

effects, which is the largest correction. The third and fourth panels show the effects of lunar

declination and libration, respectively. The lunar phase function is produced from a fifth degree

weighted polynomial fit to the corrected data. After each step of correction, the standard deviation

of the fit is reduced from originally 0.05/0.05 (evening/morning) to eventually 0.01/0.01, with the

phase function normalized to unity. A restricted regularized fitting is performed as well, which

parameterizes the intensities at 181 bins (corresponding to lunar phase 0◦ to 180◦). These 181

parameters from the fitting describe the lunar phase function, in that the intensity of any lunar

phase is the linear interpolation between the values at the two grids into which the lunar phase

falls. Note that since there are no data points beyond 150◦ degrees, the phase function fit beyond

this range is not reliable. Similarly, there are not enough data points within ±5◦, and so, we used

the eclipse data to determine the fitted peak in Figure 14 by treating opposition effect at small

phase angles (near the full moon). From the final fit, the estimated error of the mean is at the

level of 0.5%; thus, we have measured the lunar phase to 0.5%. How, the phase function in lowest

panel of Figure 14 compare with earlier efforts to determine it, like those of Danjon?

In Figure 15, we plot Danjon’s fitted phase function against our corrected one. Danjon used

slightly different fiducial patches, but that is not the source of differences, because the phase

function shown is about the same for all of our fiducial patches. Rather, the primary source is

the opposition surge which was unknown in Danjon’s time. There is a clear offset in the Danjon

phase function which would yield uniformly higher albedos than the true phase function. For our
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Fig. 15.— Danjon’s phase function (solid line) is plotted against lunar phase. Using Figure 14d,

the dashed line is our phase function for evening observations and the dotted line for morning for

the fiducial patch of Figure 14.
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phase function, we have eliminated this erroneous overestimate, by about ∼20%, of the earth’s

reflectance introduced by the phase function in earlier incarnations of earthshine studies, like those

of Danjon.

6. Precision of the Determination of the Earth’s Nightly Albedo

The effective albedo is calculated from the earthshine measurement by combining equations

(9) and (17):

A∗(β) =
3

2fL

pbfb(θ)
pafa(θ0)

Ia/Ta

Ib/Tb

R2
em

R2
e

R2
es

R2
ms

, (27)

where Ia/Ta

Ib/Tb
is the ratio of the earthshine intensity to the moonshine intensity in two opposing

fiducial patches, after correcting for airmass. The ratio between the physical reflectivity of the

two opposing fiducial patches, pb
pa

, is determined from the lunar eclipse data taken at BBSO on

November 29, 1993, as discussed in Section 5.4. The lunar phase function for the bright side,

fb(θ), is used in the formula to account for the geometrical dependence of the reflectivity of the

moon, while fa(θ0) accounts for the fact that the earthshine is not exactly retroflected from the

moon (θ0
<
∼1◦). In our analysis, θ0 is taken as the angle between the observer’s position and the

mean of the sub-solar point (position on the earth’s surface of the solar zenith)and the sub-lunar

point (position on the earth’s surface of the moon’s zenith) with the apex of the angle being

defined with respect to the fiducial patch under consideration, see Figure 1. We assume that the

moonshine and earthshine have the same lunar phase function for each fiducial patch. Thus, we

take fa(θ0) from the appropriate moonshine phase function. The earthshine is slightly bluer than

the moonshine because of Rayleigh scattering by the earth’s atmosphere. This small effect is

subsumed in the lunar geometrical albedos.

From Equation (27), one may surmise that the observational errors arising from measuring

A∗ from two opposing fiducial patches come from the errors in the readout intensity from the

moonshine and earthshine fiducial patches, the error in the transmission of the BS filter (about

0.8%), and the error in the determination of lunar phase function. The ratio pb
pa

can be regarded
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as the relative normalization of the phase functions of the opposing fiducial patches. The standard

deviation of the lunar phase function can be determined down to 0.5% from a co-variance

calculation with a comparable uncertainty for the ratio pb
pa

. The standard deviation of the Beer’s

law fitting of the moonshine for each night is taken as the error of the moonshine intensity. This

gives a value of 1.1%. For the case of the earthshine, the scattering of the data is due to both the

noise and the real physical changes in the terrestrial albedo. The average standard deviation from

Beer’s law fitting of the earthshine intensities is 1.9%. Conservatively speaking, if half the amount

of such scattering comes from the real physical change on average, the error in nightly earthshine

intensity measurement is about 1.0%. Adding up all the errors and assuming they are independent,

we get a nightly measurement error of nearly 2%. If one regards the measurements from different

pairs as being independent, the 2% is reduced to about 1%. If we combine nights to obtain, say, a

seasonal average, then the total error will be smaller, but no smaller than that associated with the

mean values of the various lunar phase functions and their relative normalizations. We regard the

determination of the ratio pb
pa

as being the most likely source of systematic errors. Measurements

of the opposition effect in future eclipses will allow us to determine if there are systematic errors,

and correct the albedos in retrospect.

To determine the Bond albedo, A, from our earthshine observations we need to integrate

A∗(θ) over all phases of the moon. Combining Equations (5), (6) and (8), we find

A =
2
3

∫ π

−π
dθA∗(θ)fL(θ) sin θ. (28)

There are two basic problems using this approach to determine the Bond albedo. The first,

and more significant problem, is that we cannot measure the earthshine for all phases of the

moon. This becomes a problem primarily for lunar phases near the new moon, where the earth

is most nearly Lambertian. The second basic problem in using the earthshine to determine the

albedo arises because the orbit of the moon traces out an ellipse in the full three dimension

space surrounding the earth, so we cannot measure the earthshine in all directions. Therefore,

we are insensitive to any azimuthal anisotropy in the earthshine. In the subsequent papers, we
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will demonstrate that the anisotropy is not significant, and one can account for it. We do this by

taking advantage of full spatial coverage provided by the simulations. For the first problem, we

will show that we can obtain a quite reliable Bond albedo from the earthshine data. These are

among the subjects of Paper II of this series.

This research was supported in part by a grant from NASA (NAG5-11007).
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