;+ ; NAME: ; MPFITEXPR ; ; AUTHOR: ; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770 ; craigm@lheamail.gsfc.nasa.gov ; UPDATED VERSIONs can be found on my WEB PAGE: ; http://cow.physics.wisc.edu/~craigm/idl/idl.html ; ; PURPOSE: ; Perform Levenberg-Marquardt least-squares fit to arbitrary expression ; ; MAJOR TOPICS: ; Curve and Surface Fitting ; ; CALLING SEQUENCE: ; MYFUNCT = 'X*(1-X)+3' ; parms = MPFITEXPR(MYFUNCT, XVAL, YVAL, ERR, start_parms, ...) ; ; DESCRIPTION: ; ; MPFITEXPR fits a user-supplied model -- in the form of an arbitrary IDL ; expression -- to a set of user-supplied data. MPFITEXPR calls ; MPFIT, the MINPACK-1 least-squares minimizer, to do the main ; work. ; ; Given the data and their uncertainties, MPFITEXPR finds the best set ; of model parameters which match the data (in a least-squares ; sense) and returns them in an array. ; ; The user must supply the following items: ; - An array of independent variable values ("X"). ; - An array of "measured" *dependent* variable values ("Y"). ; - An array of "measured" 1-sigma uncertainty values ("ERR"). ; - A text IDL expression which computes Y given X. ; - Starting guesses for all of the parameters ("START_PARAMS"). ; ; There are very few restrictions placed on X, Y or the expression of ; the model. Simply put, the expression must map the "X" values into ; "Y" values given the model parameters. The "X" values may ; represent any independent variable (not just Cartesian X), and ; indeed may be multidimensional themselves. For example, in the ; application of image fitting, X may be a 2xN array of image ; positions. ; ; Some rules must be obeyed in constructing the expression. First, ; the independent variable name *MUST* be "X" in the expression, ; regardless of the name of the variable being passed to MPFITEXPR. ; This is demonstrated in the above calling sequence, where the X ; variable passed in is called "XVAL" but the expression still refers ; to "X". Second, parameter values must be referred to as an array ; named "P". ; ; If you do not pass in starting values for the model parameters, ; MPFITEXPR will attempt to determine the number of parameters you ; intend to have (it does this by looking for references to the array ; variable named "P"). When no starting values are passed in, the ; values are assumed to start at zero. ; ; MPFITEXPR carefully avoids passing large arrays where possible to ; improve performance. ; ; See below for an example of usage. ; ; EVALUATING EXPRESSIONS ; ; This source module also provides a function called MPEVALEXPR. You ; can use this function to evaluate your expression, given a list of ; parameters. This is one of the easier ways to compute the model ; once the best-fit parameters have been found. Here is an example: ; ; YMOD = MPEVALEXPR(MYFUNCT, XVAL, PARMS) ; ; where MYFUNCT is the expression (see MYFUNCT below), XVAL is the ; list of "X" values, and PARMS is an array of parameters. The ; returned array YMOD contains the expression MYFUNCT evaluated at ; each point in XVAL. ; ; PASSING PRIVATE DATA TO AN EXPRESSION ; ; The most complicated optimization problems typically involve other ; external parameters, in addition to the fitted parameters. While ; it is extremely easy to rewrite an expression dynamically, in case ; one of the external parameters changes, the other possibility is to ; use the PRIVATE data structure. ; ; The user merely passes a structure to the FUNCTARGS keyword. The ; user expression receives this value as the variable PRIVATE. ; MPFITEXPR nevers accesses this variable so it can contain any ; desired values. Usually it would be an IDL structure so that any ; named external parameters can be passed to the expression. ; ; ; CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD ; ; The behavior of MPFIT can be modified with respect to each ; parameter to be fitted. A parameter value can be fixed; simple ; boundary constraints can be imposed; limitations on the parameter ; changes can be imposed; properties of the automatic derivative can ; be modified; and parameters can be tied to one another. ; ; These properties are governed by the PARINFO structure, which is ; passed as a keyword parameter to MPFIT. ; ; PARINFO should be an array of structures, one for each parameter. ; Each parameter is associated with one element of the array, in ; numerical order. The structure can have the following entries ; (none are required): ; ; .VALUE - the starting parameter value (but see the START_PARAMS ; parameter for more information). ; ; .FIXED - a boolean value, whether the parameter is to be held ; fixed or not. Fixed parameters are not varied by ; MPFIT, but are passed on to MYFUNCT for evaluation. ; ; .LIMITED - a two-element boolean array. If the first/second ; element is set, then the parameter is bounded on the ; lower/upper side. A parameter can be bounded on both ; sides. Both LIMITED and LIMITS must be given ; together. ; ; .LIMITS - a two-element float or double array. Gives the ; parameter limits on the lower and upper sides, ; respectively. Zero, one or two of these values can be ; set, depending on the values of LIMITED. Both LIMITED ; and LIMITS must be given together. ; ; .PARNAME - a string, giving the name of the parameter. The ; fitting code of MPFIT does not use this tag in any ; way. However, the default ITERPROC will print the ; parameter name if available. ; ; .STEP - the step size to be used in calculating the numerical ; derivatives. If set to zero, then the step size is ; computed automatically. Ignored when AUTODERIVATIVE=0. ; This value is superceded by the RELSTEP value. ; ; .RELSTEP - the *relative* step size to be used in calculating ; the numerical derivatives. This number is the ; fractional size of the step, compared to the ; parameter value. This value supercedes the STEP ; setting. If the parameter is zero, then a default ; step size is chosen. ; ; .MPSIDE - the sidedness of the finite difference when computing ; numerical derivatives. This field can take four ; values: ; ; 0 - one-sided derivative computed automatically ; 1 - one-sided derivative (f(x+h) - f(x) )/h ; -1 - one-sided derivative (f(x) - f(x-h))/h ; 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h) ; ; Where H is the STEP parameter described above. The ; "automatic" one-sided derivative method will chose a ; direction for the finite difference which does not ; violate any constraints. The other methods do not ; perform this check. The two-sided method is in ; principle more precise, but requires twice as many ; function evaluations. Default: 0. ; ; .MPMAXSTEP - the maximum change to be made in the parameter ; value. During the fitting process, the parameter ; will never be changed by more than this value in ; one iteration. ; ; A value of 0 indicates no maximum. Default: 0. ; ; .TIED - a string expression which "ties" the parameter to other ; free or fixed parameters as an equality constraint. Any ; expression involving constants and the parameter array P ; are permitted. ; Example: if parameter 2 is always to be twice parameter ; 1 then use the following: parinfo[2].tied = '2 * P[1]'. ; Since they are totally constrained, tied parameters are ; considered to be fixed; no errors are computed for them. ; [ NOTE: the PARNAME can't be used in a TIED expression. ] ; ; .MPPRINT - if set to 1, then the default ITERPROC will print the ; parameter value. If set to 0, the parameter value ; will not be printed. This tag can be used to ; selectively print only a few parameter values out of ; many. Default: 1 (all parameters printed) ; ; .MPFORMAT - IDL format string to print the parameter within ; ITERPROC. Default: '(G20.6)' (An empty string will ; also use the default.) ; ; Future modifications to the PARINFO structure, if any, will involve ; adding structure tags beginning with the two letters "MP". ; Therefore programmers are urged to avoid using tags starting with ; "MP", but otherwise they are free to include their own fields ; within the PARINFO structure, which will be ignored by MPFIT. ; ; PARINFO Example: ; parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $ ; limits:[0.D,0]}, 5) ; parinfo[0].fixed = 1 ; parinfo[4].limited[0] = 1 ; parinfo[4].limits[0] = 50.D ; parinfo[*].value = [5.7D, 2.2, 500., 1.5, 2000.] ; ; A total of 5 parameters, with starting values of 5.7, ; 2.2, 500, 1.5, and 2000 are given. The first parameter ; is fixed at a value of 5.7, and the last parameter is ; constrained to be above 50. ; ; ; COMPATIBILITY ; ; This function is designed to work with IDL 5.0 or greater. Because ; this function uses the IDL EXECUTE() function, it will not work ; with the free version of the IDL Virtual machine. ; ; ; INPUTS: ; MYFUNCT - a string variable containing an IDL expression. The ; only restriction is that the independent variable *must* ; be referred to as "X" and model parameters *must* be ; referred to as an array called "P". Do not use symbol ; names beginning with the underscore, "_". ; ; The expression should calculate "model" Y values given ; the X values and model parameters. Using the vector ; notation of IDL, this can be quite easy to do. If your ; expression gets complicated, you may wish to make an IDL ; function which will improve performance and readibility. ; ; The resulting array should be of the same size and ; dimensions as the "measured" Y values. ; ; X - Array of independent variable values. ; ; Y - Array of "measured" dependent variable values. Y should have ; the same data type as X. The function MYFUNCT should map ; X->Y. ; ; ERR - Array of "measured" 1-sigma uncertainties. ERR should have ; the same data type as Y. ERR is ignored if the WEIGHTS ; keyword is specified. ; ; START_PARAMS - An array of starting values for each of the ; parameters of the model. The number of parameters ; should be fewer than the number of measurements. ; Also, the parameters should have the same data type ; as the measurements (double is preferred). ; ; This parameter is optional if the PARINFO keyword ; is used (see MPFIT). The PARINFO keyword provides ; a mechanism to fix or constrain individual ; parameters. If both START_PARAMS and PARINFO are ; passed, then the starting *value* is taken from ; START_PARAMS, but the *constraints* are taken from ; PARINFO. ; ; If no parameters are given, then MPFITEXPR attempts ; to determine the number of parameters by scanning ; the expression. Parameters determined this way are ; initialized to zero. This technique is not fully ; reliable, so users are advised to pass explicit ; parameter starting values. ; ; ; RETURNS: ; ; Returns the array of best-fit parameters. ; ; ; KEYWORD PARAMETERS: ; ; BESTNORM - the value of the summed, squared, weighted residuals ; for the returned parameter values, i.e. the chi-square value. ; ; COVAR - the covariance matrix for the set of parameters returned ; by MPFIT. The matrix is NxN where N is the number of ; parameters. The square root of the diagonal elements ; gives the formal 1-sigma statistical errors on the ; parameters IF errors were treated "properly" in MYFUNC. ; Parameter errors are also returned in PERROR. ; ; To compute the correlation matrix, PCOR, use this: ; IDL> PCOR = COV * 0 ; IDL> FOR i = 0, n-1 DO FOR j = 0, n-1 DO $ ; PCOR[i,j] = COV[i,j]/sqrt(COV[i,i]*COV[j,j]) ; ; If NOCOVAR is set or MPFIT terminated abnormally, then ; COVAR is set to a scalar with value !VALUES.D_NAN. ; ; DOF - number of degrees of freedom, computed as ; DOF = N_ELEMENTS(DEVIATES) - NFREE ; Note that this doesn't account for pegged parameters (see ; NPEGGED). ; ; ERRMSG - a string error or warning message is returned. ; ; FTOL - a nonnegative input variable. Termination occurs when both ; the actual and predicted relative reductions in the sum of ; squares are at most FTOL (and STATUS is accordingly set to ; 1 or 3). Therefore, FTOL measures the relative error ; desired in the sum of squares. Default: 1D-10 ; ; FUNCTARGS - passed directly to the expression as the variable ; PRIVATE. Any user-private data can be communicated to ; the user expression using this keyword. ; Default: PRIVATE is undefined in user expression ; ; GTOL - a nonnegative input variable. Termination occurs when the ; cosine of the angle between fvec and any column of the ; jacobian is at most GTOL in absolute value (and STATUS is ; accordingly set to 4). Therefore, GTOL measures the ; orthogonality desired between the function vector and the ; columns of the jacobian. Default: 1D-10 ; ; ITERARGS - The keyword arguments to be passed to ITERPROC via the ; _EXTRA mechanism. This should be a structure, and is ; similar in operation to FUNCTARGS. ; Default: no arguments are passed. ; ; ITERPROC - The name of a procedure to be called upon each NPRINT ; iteration of the MPFIT routine. It should be declared ; in the following way: ; ; PRO ITERPROC, MYFUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $ ; PARINFO=parinfo, QUIET=quiet, ... ; ; perform custom iteration update ; END ; ; ITERPROC must either accept all three keyword ; parameters (FUNCTARGS, PARINFO and QUIET), or at least ; accept them via the _EXTRA keyword. ; ; MYFUNCT is the user-supplied function to be minimized, ; P is the current set of model parameters, ITER is the ; iteration number, and FUNCTARGS are the arguments to be ; passed to MYFUNCT. FNORM should be the ; chi-squared value. QUIET is set when no textual output ; should be printed. See below for documentation of ; PARINFO. ; ; In implementation, ITERPROC can perform updates to the ; terminal or graphical user interface, to provide ; feedback while the fit proceeds. If the fit is to be ; stopped for any reason, then ITERPROC should set the ; common block variable ERROR_CODE to negative value (see ; MPFIT_ERROR common block below). In principle, ; ITERPROC should probably not modify the parameter ; values, because it may interfere with the algorithm's ; stability. In practice it is allowed. ; ; Default: an internal routine is used to print the ; parameter values. ; ; MAXITER - The maximum number of iterations to perform. If the ; number is exceeded, then the STATUS value is set to 5 ; and MPFIT returns. ; Default: 200 iterations ; ; NFEV - the number of MYFUNCT function evaluations performed. ; ; NFREE - the number of free parameters in the fit. This includes ; parameters which are not FIXED and not TIED, but it does ; include parameters which are pegged at LIMITS. ; ; NITER - the number of iterations completed. ; ; NOCOVAR - set this keyword to prevent the calculation of the ; covariance matrix before returning (see COVAR) ; ; NPEGGED - the number of free parameters which are pegged at a ; LIMIT. ; ; NPRINT - The frequency with which ITERPROC is called. A value of ; 1 indicates that ITERPROC is called with every iteration, ; while 2 indicates every other iteration, etc. Note that ; several Levenberg-Marquardt attempts can be made in a ; single iteration. ; Default value: 1 ; ; PARINFO - Provides a mechanism for more sophisticated constraints ; to be placed on parameter values. When PARINFO is not ; passed, then it is assumed that all parameters are free ; and unconstrained. Values in PARINFO are never ; modified during a call to MPFIT. ; ; See description above for the structure of PARINFO. ; ; Default value: all parameters are free and unconstrained. ; ; PERROR - The formal 1-sigma errors in each parameter, computed ; from the covariance matrix. If a parameter is held ; fixed, or if it touches a boundary, then the error is ; reported as zero. ; ; If the fit is unweighted (i.e. no errors were given, or ; the weights were uniformly set to unity), then PERROR ; will probably not represent the true parameter ; uncertainties. ; ; *If* you can assume that the true reduced chi-squared ; value is unity -- meaning that the fit is implicitly ; assumed to be of good quality -- then the estimated ; parameter uncertainties can be computed by scaling PERROR ; by the measured chi-squared value. ; ; DOF = N_ELEMENTS(X) - N_ELEMENTS(PARMS) ; deg of freedom ; PCERROR = PERROR * SQRT(BESTNORM / DOF) ; scaled uncertainties ; ; QUIET - set this keyword when no textual output should be printed ; by MPFIT ; ; STATUS - an integer status code is returned. All values other ; than zero can represent success. It can have one of the ; following values: ; ; 0 improper input parameters. ; ; 1 both actual and predicted relative reductions ; in the sum of squares are at most FTOL. ; ; 2 relative error between two consecutive iterates ; is at most XTOL ; ; 3 conditions for STATUS = 1 and STATUS = 2 both hold. ; ; 4 the cosine of the angle between fvec and any ; column of the jacobian is at most GTOL in ; absolute value. ; ; 5 the maximum number of iterations has been reached ; ; 6 FTOL is too small. no further reduction in ; the sum of squares is possible. ; ; 7 XTOL is too small. no further improvement in ; the approximate solution x is possible. ; ; 8 GTOL is too small. fvec is orthogonal to the ; columns of the jacobian to machine precision. ; ; WEIGHTS - Array of weights to be used in calculating the ; chi-squared value. If WEIGHTS is specified then the ERR ; parameter is ignored. The chi-squared value is computed ; as follows: ; ; CHISQ = TOTAL( (Y-MYFUNCT(X,P))^2 * ABS(WEIGHTS) ) ; ; Here are common values of WEIGHTS: ; ; 1D/ERR^2 - Normal weighting (ERR is the measurement error) ; 1D/Y - Poisson weighting (counting statistics) ; 1D - Unweighted ; ; XTOL - a nonnegative input variable. Termination occurs when the ; relative error between two consecutive iterates is at most ; XTOL (and STATUS is accordingly set to 2 or 3). Therefore, ; XTOL measures the relative error desired in the approximate ; solution. Default: 1D-10 ; ; YFIT - the best-fit model function, as returned by MYFUNCT. ; ; ; EXAMPLE: ; ; ; First, generate some synthetic data ; x = dindgen(200) * 0.1 - 10. ; Independent variable ; yi = gauss1(x, [2.2D, 1.4, 3000.]) + 1000 ; "Ideal" Y variable ; y = yi + randomn(seed, 200) * sqrt(yi) ; Measured, w/ noise ; sy = sqrt(y) ; Poisson errors ; ; ; Now fit a Gaussian to see how well we can recover ; expr = 'P[0] + GAUSS1(X, P[1:3])' ; fitting function ; p0 = [800.D, 1.D, 1., 500.] ; Initial guess ; p = mpfitexpr(expr, x, y, sy, p0) ; Fit the expression ; print, p ; ; plot, x, y ; Plot data ; oplot, x, mpevalexpr(expr, x, p) ; Plot model ; ; Generates a synthetic data set with a Gaussian peak, and Poisson ; statistical uncertainty. Then a model consisting of a constant ; plus Gaussian is fit to the data. ; ; ; COMMON BLOCKS: ; ; COMMON MPFIT_ERROR, ERROR_CODE ; ; User routines may stop the fitting process at any time by ; setting an error condition. This condition may be set in either ; the user's model computation routine (MYFUNCT), or in the ; iteration procedure (ITERPROC). ; ; To stop the fitting, the above common block must be declared, ; and ERROR_CODE must be set to a negative number. After the user ; procedure or function returns, MPFIT checks the value of this ; common block variable and exits immediately if the error ; condition has been set. By default the value of ERROR_CODE is ; zero, indicating a successful function/procedure call. ; ; ; REFERENCES: ; ; MINPACK-1, Jorge More', available from netlib (www.netlib.org). ; "Optimization Software Guide," Jorge More' and Stephen Wright, ; SIAM, *Frontiers in Applied Mathematics*, Number 14. ; ; MODIFICATION HISTORY: ; Written, Apr-Jul 1998, CM ; Added PERROR keyword, 04 Aug 1998, CM ; Added COVAR keyword, 20 Aug 1998, CM ; Added NITER output keyword, 05 Oct 1998 ; D.L Windt, Bell Labs, windt@bell-labs.com; ; Added ability to return model function in YFIT, 09 Nov 1998 ; Parameter values can be tied to others, 09 Nov 1998 ; Added MPEVALEXPR utility function, 09 Dec 1998 ; Cosmetic documentation updates, 16 Apr 1999, CM ; More cosmetic documentation updates, 14 May 1999, CM ; Made sure to update STATUS value, 25 Sep 1999, CM ; Added WEIGHTS keyword, 25 Sep 1999, CM ; Changed from handles to common blocks, 25 Sep 1999, CM ; - commons seem much cleaner and more logical in this case. ; Alphabetized documented keywords, 02 Oct 1999, CM ; Added QUERY keyword and query checking of MPFIT, 29 Oct 1999, CM ; Check to be sure that X and Y are present, 02 Nov 1999, CM ; Documented PERROR for unweighted fits, 03 Nov 1999, CM ; Removed ITERPROC='' when quiet EQ 1, 10 Jan 2000, CM ; Changed to ERROR_CODE for error condition, 28 Jan 2000, CM ; Updated the EXAMPLE, 26 Mar 2000, CM ; Copying permission terms have been liberalized, 26 Mar 2000, CM ; Propagated improvements from MPFIT, 17 Dec 2000, CM ; Correct reference to _WTS in MPFITEXPR_EVAL, 25 May 2001, CM ; (thanks to Mark Fardal) ; Added useful FUNCTARGS behavior (as yet undocumented), 04 Jul ; 2002, CM ; Documented FUNCTARGS/PRIVATE behavior, 22 Jul 2002, CM ; Added NFREE and NPEGGED keywords, 13 Sep 2002, CM ; Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002 ; Add DOF keyword, CM, 31 Jul 2003 ; Add FUNCTARGS keyword to MPEVALEXPR, CM 08 Aug 2003 ; Minor documentation adjustment, 03 Feb 2004, CM ; Move STRICTARR compile option inside each function/procedure, 9 Oct 2006 ; Clarify documentation on user-function, derivatives, and PARINFO, ; 27 May 2007 ; Add COMPATIBILITY section, CM, 13 Dec 2007 ; ; $Id: mpfitexpr.pro,v 1.15 2007/12/15 14:28:27 craigm Exp $ ;- ; Copyright (C) 1997-2001, 2002, 2003, 2004, 2007, Craig Markwardt ; This software is provided as is without any warranty whatsoever. ; Permission to use, copy, modify, and distribute modified or ; unmodified copies is granted, provided this copyright and disclaimer ; are included unchanged. ;- FORWARD_FUNCTION mpevalexpr, mpfitexpr_eval, mpfitexpr, mpfit ; Utility function which simply returns the value of the expression, ; evaluated at each point in x, using the parameters p. function mpevalexpr, _expr, x, p, functargs=private COMPILE_OPT strictarr _cmd = '_f = '+_expr _err = execute(_cmd) return, _f end ; This is the call-back function for MPFIT. It evaluates the ; expression, subtracts the data, and returns the residuals. function mpfitexpr_eval, p, _EXTRA=private COMPILE_OPT strictarr common mpfitexpr_common, _expr, x, y, err, _wts, _f ;; Compute the model value by executing the expression _f = 0.D _cmd = '_f = '+_expr _xxx = execute(_cmd) if _xxx EQ 0 then message, 'ERROR: command execution failed.' ;; Compute the deviates, applying either errors or weights if n_elements(err) GT 0 then begin result = (y-_f)/err endif else if n_elements(_wts) GT 0 then begin result = (y-_f)*_wts endif else begin result = (y-_f) endelse ;; The returned result should be one-dimensional result = reform(result, n_elements(result), /overwrite) return, result end ;; This is the main entry point for this module function mpfitexpr, expr, x, y, err, p, WEIGHTS=wts, $ BESTNORM=bestnorm, STATUS=status, nfev=nfev, $ parinfo=parinfo, query=query, functargs=fcnargs, $ covar=covar, perror=perror, yfit=yfit, $ niter=niter, nfree=nfree, npegged=npegged, dof=dof, $ quiet=quiet, _EXTRA=extra, errmsg=errmsg COMPILE_OPT strictarr status = 0L errmsg = '' ;; Detect MPFIT and crash if it was not found catch, catcherror if catcherror NE 0 then begin MPFIT_NOTFOUND: catch, /cancel message, 'ERROR: the required function MPFIT must be in your IDL path', /info return, !values.d_nan endif if mpfit(/query) NE 1 then goto, MPFIT_NOTFOUND catch, /cancel if keyword_set(query) then return, 1 if n_params() EQ 0 then begin message, "USAGE: PARMS = MPFITEXPR('EXPR', X, Y, ERR, "+ $ "START_PARAMS, ... )", /info return, !values.d_nan endif if n_elements(x) EQ 0 OR n_elements(y) EQ 0 then begin message, 'ERROR: X and Y must be defined', /info return, !values.d_nan endif ;; If no parameters are given, then parse the input expression, ;; and determine the number of parameters automatically. if (n_elements(parinfo) GT 0) AND (n_elements(p) EQ 0) then $ p = parinfo[*].value if (n_elements(p) EQ 0) then begin pos = 0L nparams = 0L ee = strupcase(expr) ;; These are character constants representing the boundaries of ;; variable names. ca = (byte('A'))[0] cz = (byte('Z'))[0] c0 = (byte('0'))[0] c9 = (byte('9'))[0] c_ = (byte('_'))[0] ;; Underscore can be in a variable name ll = strlen(ee) pnames = [''] ;; Now step through, looking for variables looking like p[0], etc. repeat begin i = [strpos(ee, 'P(', pos), strpos(ee, 'P[', pos)] wh = where(i GE 0, ct) if ct LE 0 then goto, DONE_PARAMS i = min(i[wh]) ;; None found, finished if i LT 0 then goto, DONE_PARAMS ;; Too close to the end of the string if i GT ll-4 then goto, DONE_PARAMS ;; Have to be careful here, to be sure that this isn't just ;; a variable name ending in "p" maybe = 0 ;; If this is the first character if i EQ 0 then maybe = 1 $ else begin ;; Or if the preceding character is a non-variable character c = (byte(strmid(ee, i-1, 1)))[0] if NOT ( (c GE ca AND c LE cz) OR (c GE c0 AND c LE c9) $ OR c EQ c_ ) then maybe = 1 endelse if maybe then begin ;; If we found one, then strip out the value inside the ;; parentheses. rest = strmid(ee, i+2, ll-i-2) next = str_sep(rest, ')', /trim) next = next[0] pnames = [pnames, next] endif pos = i+1 endrep until pos GE ll DONE_PARAMS: if n_elements(pnames) EQ 1 then begin message, 'ERROR: no parameters to fit', /info return, !values.d_nan endif ;; Finally, we take the maximum parameter number pnames = pnames[1:*] nparams = max(long(pnames)) + 1 if NOT keyword_set(quiet) then $ message, ' Number of parameters: '+strtrim(nparams,2) $ + ' (initialized to zero)', /info ;; Create a parameter vector, starting at zero p = dblarr(nparams) endif ;; Use common block to pass data back and forth common mpfitexpr_common, fc, xc, yc, ec, wc, mc fc = expr & xc = x & yc = y & mc = 0L ;; These optional parameters must be undefined first ec = 0 & dummy = size(temporary(ec)) wc = 0 & dummy = size(temporary(wc)) if n_elements(wts) GT 0 then begin wc = sqrt(abs(wts)) endif else if n_elements(err) GT 0 then begin wh = where(err EQ 0, ct) if ct GT 0 then begin message, 'ERROR: ERROR value must not be zero. Use WEIGHTS.', $ /info return, !values.d_nan endif ec = err endif ;; Test out the function, as mpfit would call it, to see if it works ;; okay. There is no sense in calling the fitter if the function ;; itself doesn't work. catch, catcherror if catcherror NE 0 then begin CATCH_ERROR: catch, /cancel message, 'ERROR: execution of "'+expr+'" failed.', /info message, ' check syntax and parameter usage', /info xc = 0 & yc = 0 & ec = 0 & wc = 0 & ac = 0 return, !values.d_nan endif ;; Initialize. Function that is actually called is mpfitexpr_eval, ;; which is a wrapper that sets up the expression evaluation. fcn = 'mpfitexpr_eval' ;; FCNARGS are passed by MPFIT directly to MPFITEXPR_EVAL. These ;; actually contain the data, the expression, and a slot to return ;; the model function. fvec = call_function(fcn, p, _EXTRA=fcnargs) if n_elements(fvec) EQ 1 then $ if NOT finite(fvec[0]) then goto, CATCH_ERROR ;; No errors caught if reached this stage catch, /cancel ;; Call MPFIT result = mpfit(fcn, p, $ parinfo=parinfo, STATUS=status, nfev=nfev, BESTNORM=bestnorm,$ covar=covar, perror=perror, functargs=fcnargs, $ niter=niter, nfree=nfree, npegged=npegged, dof=dof, $ ERRMSG=errmsg, quiet=quiet, _EXTRA=extra) ;; Retrieve the fit value yfit = temporary(mc) ;; Some cleanup xc = 0 & yc = 0 & wc = 0 & ec = 0 & mc = 0 & ac = 0 ;; Print error message if there is one. if NOT keyword_set(quiet) AND errmsg NE '' then $ message, errmsg, /info return, result end