;+ ; Project : STEREO ; ; Name : WCS_INV_PROJ_PAR ; ; Purpose : Inverse of WCS_PROJ_PAR ; ; Category : FITS, Coordinates, WCS ; ; Explanation : This routine is called from WCS_GET_PIXEL to apply the inverse ; parabolic (PAR) or Craster pseudocylindrical projection to ; convert from celestial coordinates to intermediate relative ; coordinates. ; ; Syntax : WCS_INV_PROJ_PAR, WCS, COORD ; ; Examples : See WCS_GET_PIXEL ; ; Inputs : WCS = A World Coordinate System structure, from FITSHEAD2WCS. ; COORD = The coordinates, e.g. from WCS_GET_COORD. ; ; Opt. Inputs : None. ; ; Outputs : The de-projected coordinates are returned in the COORD array. ; ; Opt. Outputs: None. ; ; Keywords : None. ; ; Calls : TAG_EXIST, NTRIM ; ; Common : None. ; ; Restrictions: Because this routine is intended to be called only from ; WCS_GET_PIXEL, no error checking is performed. ; ; Side effects: None. ; ; Prev. Hist. : None. ; ; History : Version 1, 20-May-2005, William Thompson, GSFC ; ; Contact : WTHOMPSON ;- ; pro wcs_inv_proj_par, wcs, coord on_error, 2 halfpi = !dpi / 2.d0 ; ; Calculate the conversion from coordinate units into radians. ; cx = !dpi / 180.d0 case wcs.cunit[wcs.ix] of 'arcmin': cx = cx / 60.d0 'arcsec': cx = cx / 3600.d0 'mas': cx = cx / 3600.d3 'rad': cx = 1.d0 else: cx = cx endcase ; cy = !dpi / 180.d0 case wcs.cunit[wcs.iy] of 'arcmin': cy = cy / 60.d0 'arcsec': cy = cy / 3600.d0 'mas': cy = cy / 3600.d3 'rad': cy = 1.d0 else: cy = cy endcase ; ; Get the native longitude (phi0) and latitude (theta0) of the fiducial ; point. Look for the PV values from the FITS header. If not found, use the ; default values (0,0). ; phi0 = 0.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.ix+1) + '_1' w = where(wcs.proj_names eq name, count) if count gt 0 then phi0 = wcs.proj_values[w[0]] endif ; theta0 = 0.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.ix+1) + '_2' w = where(wcs.proj_names eq name, count) if count gt 0 then theta0 = wcs.proj_values[w[0]] endif ; ; Convert phi0 and theta0 to radians ; phi0_deg = phi0 phi0 = (!dpi / 180.d0) * phi0 theta0 = (!dpi / 180.d0) * theta0 ; ; Get the celestial longitude and latitude of the fiducial point. ; alpha0 = wcs.crval[wcs.ix] * cx delta0 = wcs.crval[wcs.iy] * cy ; ; Get the native longitude (phip) of the celestial pole. Look for the LONPOLE ; (or PVi_3) keyword. If not found, use the default value. Convert to ; radians. ; if delta0 ge theta0 then phip = phi0_deg else phip = 180.d0 + phi0_deg if tag_exist(wcs, 'proj_names', /top_level) then begin w = where(wcs.proj_names eq 'LONPOLE', count) if count gt 0 then phip = wcs.proj_values[w[0]] name = 'PV' + ntrim(wcs.ix+1) + '_3' w = where(wcs.proj_names eq name, count) if count gt 0 then phip = wcs.proj_values[w[0]] endif phip = (!dpi / 180.d0) * phip ; ; Get the native latitude (thetap) of the celestial pole. Look for the ; LATPOLE (or PVi_3) keyword. If not found, use the default value. Convert ; to radians. ; thetap = 90 if tag_exist(wcs, 'proj_names', /top_level) then begin w = where(wcs.proj_names eq 'LATPOLE', count) if count gt 0 then thetap = wcs.proj_values[w[0]] name = 'PV' + ntrim(wcs.ix+1) + '_4' w = where(wcs.proj_names eq name, count) if count gt 0 then thetap = wcs.proj_values[w[0]] endif thetap = (!dpi / 180.d0) * thetap ; ; Determine the pole position. ; if (theta0 eq 0) and (delta0 eq 0) and (abs(phip - phi0) eq halfpi) then begin deltap = thetap end else begin deltap0 = atan(sin(theta0), cos(theta0)*cos(phip-phi0)) test = sin(delta0)/sqrt(1-cos(theta0)^2*sin(phip-phi0)^2) if abs(test) gt 1 then message, 'Incompatible projection parameters' deltap1 = acos(test) deltap = deltap0 + deltap1 deltap2 = deltap0 - deltap1 if abs(deltap) gt halfpi then deltap = deltap2 if abs(deltap2) gt halfpi then deltap2 = deltap if abs(deltap-thetap) gt abs(deltap2-thetap) then deltap = deltap2 endelse ; if deltap eq halfpi then begin alphap = alpha0 + phip - phi0 - !dpi end else if deltap eq -halfpi then begin alphap = alpha0 - phip + phi0 end else if abs(delta0) eq halfpi then begin alphap = alpha0 end else begin das = sin(phip-phi0)*cos(theta0) / cos(delta0) dac = (sin(theta0)-sin(deltap)*sin(delta0)) / (cos(deltap)*cos(delta0)) if (das eq 0) and (dac eq 0) then alphap = alpha0 - !dpi else $ alphap = alpha0 - atan(das,dac) endelse ; ; Convert from celestial to native spherical coordinates. ; alpha = cx * coord[wcs.ix,*] delta = cy * coord[wcs.iy,*] dalpha = alpha - alphap cos_dalpha = cos(dalpha) sin_delta = sin(delta) cos_delta = cos(delta) phi = phip + atan(-cos_delta*sin(dalpha), $ sin_delta*cos(deltap) - cos_delta*sin(deltap)*cos_dalpha) theta = asin(sin_delta*sin(deltap) + cos_delta*cos(deltap)*cos_dalpha) ; ; Calculate the relative coordinates. ; x = phi * (2.d0*cos(theta/1.5d0) - 1.d0) y = !dpi * sin(theta / 3.d0) ; ; Convert back into the original units. ; coord[wcs.ix,*] = x / cx coord[wcs.iy,*] = y / cy ; end