;+ ; Project : STEREO ; ; Name : WCS_INV_PROJ_SIN ; ; Purpose : Inverse of WCS_PROJ_SIN ; ; Category : FITS, Coordinates, WCS ; ; Explanation : This routine is called from WCS_GET_PIXEL to apply the inverse ; slant orthographic (SIN) projection to convert from celestial ; coordinates to intermediate relative coordinates. ; ; Syntax : WCS_INV_PROJ_SIN, WCS, COORD ; ; Examples : See WCS_GET_PIXEL ; ; Inputs : WCS = A World Coordinate System structure, from FITSHEAD2WCS. ; COORD = The coordinates, e.g. from WCS_GET_COORD. ; ; Opt. Inputs : None. ; ; Outputs : The de-projected coordinates are returned in the COORD array. ; ; Opt. Outputs: None. ; ; Keywords : None. ; ; Calls : TAG_EXIST, NTRIM ; ; Common : None. ; ; Restrictions: Because this routine is intended to be called only from ; WCS_GET_PIXEL, no error checking is performed. ; ; This routine is not guaranteed to work correctly if the ; projection parameters are non-standard. ; ; Side effects: None. ; ; Prev. Hist. : None. ; ; History : Version 1, 19-May-2005, William Thompson, GSFC ; ; Contact : WTHOMPSON ;- ; pro wcs_inv_proj_sin, wcs, coord on_error, 2 halfpi = !dpi / 2.d0 ; ; Calculate the conversion from coordinate units into radians. ; cx = !dpi / 180.d0 case wcs.cunit[wcs.ix] of 'arcmin': cx = cx / 60.d0 'arcsec': cx = cx / 3600.d0 'mas': cx = cx / 3600.d3 'rad': cx = 1.d0 else: cx = cx endcase ; cy = !dpi / 180.d0 case wcs.cunit[wcs.iy] of 'arcmin': cy = cy / 60.d0 'arcsec': cy = cy / 3600.d0 'mas': cy = cy / 3600.d3 'rad': cy = 1.d0 else: cy = cy endcase ; ; Get the native longitude (phi0) and latitude (theta0) of the fiducial ; point. Look for the PV values from the FITS header. If not found, use the ; default values (0,90). ; phi0 = 0.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.ix+1) + '_1' w = where(wcs.proj_names eq name, count) if count gt 0 then phi0 = wcs.proj_values[w[0]] endif ; theta0 = 90.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.ix+1) + '_2' w = where(wcs.proj_names eq name, count) if count gt 0 then theta0 = wcs.proj_values[w[0]] endif ; ; If PHI0 and THETA0 are non-standard, then signal an error. ; if (phi0 ne 0) or (theta0 ne 90) then message, /informational, $ 'Non-standard PVi_1 and/or PVi_2 values -- ignored' ; ; Convert phi0 and theta0 to radians ; phi0 = (!dpi / 180.d0) * phi0 theta0 = (!dpi / 180.d0) * theta0 ; ; Get the projection parameters zeta and eta. If not found, use the default ; values of 0. ; zeta = 0.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.iy+1) + '_1' w = where(wcs.proj_names eq name, count) if count gt 0 then zeta = wcs.proj_values[w[0]] endif ; eta = 0.d0 if tag_exist(wcs, 'proj_names', /top_level) then begin name = 'PV' + ntrim(wcs.iy+1) + '_2' w = where(wcs.proj_names eq name, count) if count gt 0 then eta = wcs.proj_values[w[0]] endif ; ; Get the celestial longitude and latitude of the fiducial point. ; alpha0 = wcs.crval[wcs.ix] * cx delta0 = wcs.crval[wcs.iy] * cy ; ; Get the native longitude (phip) of the celestial pole. Look for the LONPOLE ; (or PVi_3) keyword. If not found, use the default value. Convert to ; radians. ; if delta0 ge theta0 then phip=0 else phip=180 if tag_exist(wcs, 'proj_names', /top_level) then begin w = where(wcs.proj_names eq 'LONPOLE', count) if count gt 0 then phip = wcs.proj_values[w[0]] name = 'PV' + ntrim(wcs.ix+1) + '_3' w = where(wcs.proj_names eq name, count) if count gt 0 then phip = wcs.proj_values[w[0]] endif if (phip ne 180) and (delta0 ne halfpi) then message, /informational, $ 'Non-standard LONPOLE value ' + ntrim(phip) phip = (!dpi / 180.d0) * phip ; ; Convert from celestial to native spherical coordinates. ; alpha = cx * coord[wcs.ix,*] delta = cy * coord[wcs.iy,*] dalpha = alpha - alpha0 cos_dalpha = cos(dalpha) sin_delta = sin(delta) cos_delta = cos(delta) phi = phip + atan(-cos_delta*sin(dalpha), $ sin_delta*cos(delta0) - cos_delta*sin(delta0)*cos_dalpha) theta = asin(sin_delta*sin(delta0) + cos_delta*cos(delta0)*cos_dalpha) ; ; Calculate the relative coordinates. ; cos_theta = cos(theta) if (zeta ne 0) or (eta ne 0) then sin_theta = sin(theta) if zeta eq 0 then x = cos_theta * sin(phi) else $ x = cos_theta*sin(phi) + zeta*(1 - sin_theta) if eta eq 0 then y = -cos_theta * cos(phi) else $ y = -cos_theta*cos(phi) + eta*(1 - sin_theta) ; ; Convert back into the original units. ; coord[wcs.ix,*] = x / cx coord[wcs.iy,*] = y / cy ; end