ATST Modulat	tor Matrix		4/17/2002 Elmore, Keller, Tomczyk, Judge														
									mm	arcmin	20000						
Туре	Rates	States	Wavelength	Tunability	Achromatic	Efficiency	Polarization	Fringing	Size	Field of	Entendue	Flux	Flux	Thermal	Mechanical	Detectors	Special
			Range				Crosstalk		Maximum	View		watt/cm^2	watt/cm^2	Sensitivity	Size		
Ferroelectric LC	0-4kHz	4	400-1600	а	b,c	0.577	0	d	50	600	30000	6.4	1	e	50+	all	f,h
Nematic LC	0-50Hz	4	400-1600	yes	no	0.577	0	good	50	600	30000	6.4	1	g	50+	all	h
Rotating retarder	0-1kHz	8	296-1600	а	b	0.506	k,n	good	125	180	22500	1.024	lots	1	Large	all	m
PEM	100kHz	4	296-1600	yes	no	0.5	n	good	50	3000	150000	6.4	lots	good	50+	C3Po	р
Rotating retarder	slow																
& PEM or FLC	& fast	8	296-1600	а	b	0.506	k,n	d	125	180	22500	1.024	lots	1	Large	C3Po	0
Pockel's Cell	0-n kHz	4	400-1600	yes	no	0.577	n	good	100	120	12000	1.6	q	?	100+	all	r
Stress Birefringer	slow	4	296-1600	yes	no	0.577	0	good	500	120	60000	0.064	lots	?	Large	all	S
Rotating Fresnel																	
Rhomb	0-1kHz	8	296-1600	na	yes	0.506	k,n	good	167	120	20000	0.576	lots	good	Huge	all	t,m
other LC																	

z In all cases the influence of telescope polarization between the modulator and analyzer has not been included.

Panchratnam arrangement could rotate center element to obtain desired retardance at a range of wavelengths. Fast axis will wander. Retardance tunability a possibility. а

Pnachratnam fixed arrangement would be achromatic. Multiple panchratnam plates possible. b

Combination of LC materials may be possible for achromaticity. с

Fringing depends upon the number of surfaces. A Panchratnam configuration could have significant fringes d

Range of axis switching is a function of temperature. Range diminishes approximately .7degress/C е

f Low voltage switchable.

Approximately 0.25 degrees of retardance/C g

Careful characterization of retardance vs voltage and temperature is important. h

i Achromatic bi-crystaline retarders have been fabricated. Super achromatic panchratnam retarder is possible

k Since all states not modulated with equal efficiency, telescope polarization variations from intensity leak into polarization

Thermal sensitivity of a crystal or bi-crystalline achromat is large. An athermal bi-crystalline non-achromat has been designed. 1

Rotating mechanical device must have good servo and is very large compared to optic. m

Modulation could be fast compared to seeing therefore eliminating crosstalk. If fast enough only one beam is needed. n

Similar system used in Mk4. Frequency response has not been modeled. 0

Precise phasing of two PEMs and detector has not yet been demonstrated р

Depends upon conducting layer q

Much progress since Stokes II. Research needed here. r

A lot of energy to create retardance. Nearly uncharted territory. s

Huge mechanical beast. Do not now know how to make a retarder of about 3/8 wave. t

C3Po = Charge Caching Cmos PhOtodetector? Can we count on one of these for ATST?

Detectors CCD, HgCdTe, C3Po vis or IR