Modulator Ranking based upon current bias, assuming no fatal flaws

• Pockel's Cell:

- o Wavelength tunable
- o frequency tunable
- o balanced modulation amplitude
- o solid state.

• FLC:

- o Frequency tunable
- o balanced modulation amplitude
- o solid state

• LCVR modulator+ FLC analyzer:

- o Wavelength tunable,
- o frequency tunable
- o balanced modulation amplitude

• Rotating XYZZY:

o Frequency tunable

• Stress:

- o Frequency tunable (sort of)
- o Wavelength tunable
- o Balanced modulation amplitude

• PEM:

Wavelength tunable

• Pi Cells

- o Frequency tunable
- o balanced modulation amplitude
- o solid state
- o wide field
- 0

• Other liquid crystals

o depends

Possible Fatal Flaws with opinion on severity

Red is likely, Blue is concern

- Pockel's Cell:
 - o Wavelength range
 - o Frequency range
 - Flux tolerance
- FLC
 - Wavelength range
 - o Flux tolerance
- LCVR modulator + FLC analyzer
 - o Wavelength range
 - o Flux tolerance
- Rotating XYZZY
 - o Unbalanced modulation amplitude
- Stress
 - o Too slow
- PEM
 - o Too fast
 - o Dual plate phasing not demonstrated
- Pi Cell
 - o Wavelength range
 - o Flux tolerance
- Other LC
 - o Same problems as FLC and LCVR

Without doing additional research, Rotating XYZZY is Baseline

What is XYZZY?

Rhomb

- o Achromatic over full range
- o Best match to requirements of all modulation techniques
- o Mechanical nightmare

• Crystal retarder

- o Fewest problems with fringing and rotation
- o Panchratnam configuration possible
- o Cannot match modulation amplitude to every line

Polymer retarder

- o Panchratnam configuration possible
- o Cannot match modulation amplitude to every line

• Bi-crystalline retarder

- o Could be achromatic over some range
- o Could be athermal
- o Panchratnam configuration possible (super-achromat)
- o Multiple surfaces with reflections aberrations ...
- o Cannot match modulation amplitude to every line

Action Items

Affects choice of modulator...

- **AI 1.** Evaluate Pockel's cells for Wavelength range, frequency response and flux tolerance.
- AI 2. Evaluate FLCs for extended blue response and total flux tolerance
- AI 3. Evaluate LCVRs for extended blue response and total flux tolerance

Affects choice of modulation rate and detector...

- **AI 4.** Using seeing models, evaluate each possible scheme for cross talk, including modulation amplitude imbalance, a range of frequencies, telescope polarization, and polarization between modulator and analyzer.
- **AI 5.** Derive a very good flux budget for each configuration.

Course of Action

Choose modulator

If AI 1 shows Pockel's cell is OK then Pockel's cell is baseline

Else If AI 2 shows FLC is OK then FLC is baseline

Else IF AI 3 shows LCVR+LFC is OK then LCVR+FLC is baseline

Else rotating XYZZY is baseline

Choose rates and detectors

Perform AI 4 on at lease baseline modulator to determine frequencies and detectors.

If rotating XYZZY, perform XYZZY trade study

Death is in the details

Perform detailed analysis of modulator properties.